Advertisement

Resonance Polarization and Hanle Effect

The integral equation formulation and some applications
  • H. Frisch
Part of the Astrophysics and Space Science Library book series (ASSL, volume 243)

Abstract

It is shown that the intensity and polarization of spectral lines formed with complete frequency redistribution in non-LTE conditions can be described by an integral equation for a source vector depending only on optical depth. The origin of the scalar integral equation for the non-polarized case is recalled and then it is shown show how a suitable decomposition of the phase matrix, which describes the redistribution in frequency, direction and polarization at each scattering, allows one to construct vector integral equations for resonance polarization and the Hanle effect. The correspondence between the phase matrix decomposition approach and the density matrix formalism is studied in detail.

Vector integral equations for polarized transfer, are known to be useful for analytical work, numerical work and phenomenological analyses. We give a general proof of the \( \sqrt \in \)-law for the surface value of the source function and apply it to resonance polarization and Hanle effect.

Key words

polarization magnetic fields radiative transfer scattering stars: atmospheres methods: analytical 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ariste Lopez, A. and Semel, M.: 1999, in K.N. Nagendra, J.O. Stenflo (eds.), Solar Polarization, Proc. 2nd SPW, Kluwer, Dordrecht, (in this Volume)Google Scholar
  2. Avrett, E.H. and Hummer, D.G.: 1965, Mon. Not. R. astr. Soc. 130, 295ADSGoogle Scholar
  3. Bommier, V.: 1996, in J.O. Stenflo, K.N. Nagendra (eds.), Solar Polarization, Proc. 1st SPW, Kluwer, Dordrecht, p. 29 (also Solar Phys. 164, 29)CrossRefGoogle Scholar
  4. Bommier, V.: 1999, in K.N. Nagendra, J.O. Stenflo (eds.), Solar Polarization, Proc. 2nd SPW, Kluwer, Dordrecht, (in this Volume)Google Scholar
  5. Bommier, V. and Landi Degl’Innocenti, E.: 1998, in Themis workshop on Radiative Transfer and Inversion Codes, Tenerife (Spain), 9–11 February 1998. C. Briand (ed), Publi. Obs. Paris, p. 17Google Scholar
  6. Brink, D.M. and Satchler, G.R., 1968, Angular Momentum (Second Edition), Oxford University PressGoogle Scholar
  7. Chandrasekhar S., 1950, Radiative Transfer, Oxford University Press (revised version Dover, New York, 1960)zbMATHGoogle Scholar
  8. Faurobert-Scholl, M.: 1991, Astron. Astrophys. 246, 469ADSGoogle Scholar
  9. Faurobert-Scholl, M., Frisch, H., and Nagendra, K.N.: 1997, Astron. Astrophys. 322, 896ADSGoogle Scholar
  10. Frisch, H.: 1980, Astron. Astrophys. 87, 357ADSGoogle Scholar
  11. Frisch, H.: 1998, Astron. Astrophys. 338, 683ADSGoogle Scholar
  12. Frisch, U. and Frisch, H.: 1975, Mon. Not. R. astr. Soc. 173, 167ADSGoogle Scholar
  13. Frisch, U. and Frisch, H.: 1994, in Lévy Flights and Related Topics in Physics, M.F. Shlesinger, G.M Zaslavsky, and U. Frisch, (eds), p. 262Google Scholar
  14. Hubeny, I.: 1987, Astron. Astrophys. 185, 332MathSciNetADSGoogle Scholar
  15. Ivanov, V.V.: 1969, Radiative Transfer and the Spectra of Celestial Bodies (in Russian), Nauka, Moscow Ivanov, V.V.: 1973, Transfer of Radiation in Spectral Lines(revised English edition of Ivanov, 1969), Natl. Bur. Stand. Spec. Publ. No 385, WashingtonGoogle Scholar
  16. Ivanov, V.V.: 1985, Soviet Astron. 29, 162 (russian original Astron. Zh. 62, 283)ADSGoogle Scholar
  17. Ivanov, V.V.: 1990, Soviet Astron. 34, 621 (russian original Astron. Zh. 67, 1233)ADSGoogle Scholar
  18. Ivanov, V.V.: 1994, Astron. Astrophys. 286, 328ADSGoogle Scholar
  19. Ivanov, V.V.: 1995, Astron. Astrophys. 303, 609ADSGoogle Scholar
  20. Ivanov, V.V., Grachev, S.I., and Loskutov, V.M.: 1997, Astron. Astrophys. 321, 968ADSGoogle Scholar
  21. Landi Degl’Innocenti, E.: 1979, Man. Not. R. astr. Soc. 186, 369Google Scholar
  22. Landi Degl’Innocenti, E.: 1983, Solar Phys. 85, 3CrossRefGoogle Scholar
  23. Landi Degl’Innocenti, E.: 1984, Solar Phys. 91, 1Google Scholar
  24. Landi Degl’Innocenti, E., Bommier, V., and Sahal-Bréchot, S.: 1990, Astron. Astrophys. 235, 459ADSGoogle Scholar
  25. Landi Degl’Innocenti, E. and Bommier, V.: 1994, Astron. Astrophys. 284, 865Google Scholar
  26. Landi Degl’Innocenti, M. and Landi Degl’Innocenti, E.: 1988, Astron. Astrophys. 192, 374Google Scholar
  27. Mihalas, D.: 1978, Stellar Atmospheres, Freeman and Company, San FranciscoGoogle Scholar
  28. Nagendra, K.N., Frisch, H., and Faurobert-Scholl, M.: 1998, Astron. Astrophys. 332, 610ADSGoogle Scholar
  29. Olson G.L., Auer, L.H., and Buchler, J.R.: 1986, J. Q.S.R. T 35, 431Google Scholar
  30. Paletou, F. and Auer, L.: 1995, Astron. Astrophys. 297, 771ADSGoogle Scholar
  31. Paletou, F. and Faurobert-Scholl, M.: 1997, Astron. Astrophys. 328, 343ADSGoogle Scholar
  32. Paletou, F., Faurobert-Scholl, M., and Bommier, V. : 1999, in K.N. Nagendra, J.O. Stenflo (eds.), Solar Polarization, Proc. 2nd SPW, Kluwer, Dordrecht, (in this Volume)Google Scholar
  33. Rees, D.E.: 1978, Publ. Astr. Soc. Japan 30, 455ADSGoogle Scholar
  34. Rybicki, G.B.: 1977, Astrophys. J. 213, 165MathSciNetADSCrossRefGoogle Scholar
  35. Sekera, Z.: 1963, Rand Corporation Memo. R-413-PRGoogle Scholar
  36. Stenflo, J.O. and Stenholm, L.: 1976, Astron. Astrophys. 46, 69ADSGoogle Scholar
  37. Stenflo, J.O. and Nagendra, K.N. (eds.): 1996, Solar Polarization, Proc. 1st SPW, Kluwer, Dordrecht, (also Solar Phys. 164)Google Scholar
  38. Trujillo-Bueno, J.: 1998, in Themis workshop on Radiative Transfer and Inversion Codes, Tenerife (Spain), 9–11 February 1998. C. Briand (ed), Publ. Obs. Paris, p. 27Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • H. Frisch
    • 1
  1. 1.Département G.D. Cassini (CNRS/UMR 6529)Observatoire de la Côte d’AzurNice Cedex 4France

Personalised recommendations