Advertisement

Stokes Profile Reconstruction with the Imaging Vector Magnetograph

  • K. D. Leka
  • D. L. Mickey
  • B. J. Labonte
Part of the Astrophysics and Space Science Library book series (ASSL, volume 243)

Abstract

We demonstrate that when appropriate account of distortions from the Earth’s atmosphere and instrumental effects are taken, an imaging polarimeter can yield Stokes Spectra which are easily suitable for quantitative polarimetry. We describe here some of the corrections which must be applied to the raw imaging data, including a correction for seeing-produced blur and spatial distortion, in order to recover accurate wavelength-sampled spectra in the Stokes [I, Q, U, V] parameters. We present the comparison between Stokes spectra from the Imaging Vector Magnetograph (“IVM”; Mickey et al. 1996) and co-temporal data from the Advanced Stokes Polarimeter (“ASP”; Lites 1996). We find that (1) the integrated polarization signals for the two instruments, both linear and circular, are well matched when the ASP data are convolved to the IVM’s spectral resolution, (2). The ratios of linear to circular polarization and of the Q, U signals are comparable between the two instruments, (3) The reconstructed [I, Q, U, V] spectra are well matched over the 6302.5A line, although (4) in dark umbral points, the IVM spectra of I are deeper than the ASP spectra, possibly due to a lack of scattered-light correction in the latter. The results demonstrate that vector polarimetry suitable for quantitative magnetic field analysis can be obtained with an imaging polarimeter.

Key words

polarization sunspots magnetic fields instrumentation: polarimetry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cauzzi, G., Canfield, R. C., and Fisher, G. H.: 1996, Astrophys. J., 456, p850.ADSCrossRefGoogle Scholar
  2. Elmore, D. F., et al.: 1992, Proceedings of the SPIE, 1746, 22.ADSCrossRefGoogle Scholar
  3. LaBonte, B. J., Mickey, D. L., and Leka, K. D.: 1999, Solar Phys., submitted.Google Scholar
  4. Leka, K. D., Canfield, R. C., McClymont, A. N., and van Driel-Gesztelyi, L,: 1996, Astrophys. J., 462, p547.ADSCrossRefGoogle Scholar
  5. Leka, K. D.: 1997, Astrophys. J., 484, 900.ADSCrossRefGoogle Scholar
  6. Lites, B. W., Leka, K. D., Skumanich, A., Martinez Pillet, V., and Shimizu, T.: 1996, Astrophys. J., 460, 1019.ADSCrossRefGoogle Scholar
  7. Lites, B. W.: 1996, Solar Phys., 163, 223.ADSCrossRefGoogle Scholar
  8. Mickey, D. L., Canfield, R. C., LaBonte, B. J., Leka, K. D., Waterson, M. F., and Weber, H. M.: 1996, Solar Phys. 168, 229.ADSCrossRefGoogle Scholar
  9. Longcope, D., et al.: 1997, Abstracts: AAS/SPD meeting #29, # 01.28.Google Scholar
  10. Sigwarth, M., Balasubramaniam, K. S., and Knölker, M.: 1998, Astron. Astrophys., in preparation.Google Scholar
  11. Skumanich, A., Lites, B. W., Martinez Pillet, V., and Seagraves, P.: 1997, Astrophys. J. Supp., 310, 350.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • K. D. Leka
    • 1
  • D. L. Mickey
    • 2
  • B. J. Labonte
    • 2
  1. 1.Colorado Research AssociatesBoulderUSA
  2. 2.Institute for AstronomyHonoluluUSA

Personalised recommendations