Advertisement

Exponential Solutions to the Radiative Transfer Equation for Polarized Light

  • A. López Ariste
  • M. Semel
Part of the Astrophysics and Space Science Library book series (ASSL, volume 243)

Abstract

We present three exponential solutions to the radiative transfer equation for polarized light (RTE). Two of them are general but with no practical application in the numerical codes as of today. The third one, while not general, presents less constraints than other well-known analytical solutions and still allows implementation in a numerical code. The performances of this code, named DIAGONAL, will be illustrated through several examples. It has been used as the core of an inversion code, some of whose preliminary results will also be presented.

Key word

polarization magnetic fields radiative transfer methods: numerical 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bellot Rubio, L., Ruiz Cobo, B. and Collados, M.: 1998, Astroph. J., 506, 805ADSCrossRefGoogle Scholar
  2. Landi Degl’Innocenti, E.: 1987, in W. Kalkofen (ed.), Numerical Radiative Transfer, Cambridge University Press.Google Scholar
  3. Frisch, H.: 1990, in D. Benest and C. Froeschle (eds.) 14éme École de Goutelas, p. 151.Google Scholar
  4. Landi Degl’Innocenti, E.: 1992, in F. Sánchez, M. Collados and M. Vázquez (eds.), Solar Observations: Techniques and Interpretation, Cambridge University Press.Google Scholar
  5. Landi Degl’Innocenti, E. and Landi Degl’Innocenti, M.: 1981, Nuovo Cimento B, 62, 1ADSCrossRefGoogle Scholar
  6. Landi Degl’Innocenti, E. and Landi Degl’Innocenti, M.: 1985, Sol. Phys., 97, 239CrossRefGoogle Scholar
  7. Lites, B., Skumanich, A., Rees, D. and Murphy, G.: 1988, Astroph. J., 330, 493ADSCrossRefGoogle Scholar
  8. López Ariste, A. and Semel, M.: 1999. Submitted to Astron. Astrophys. Google Scholar
  9. Magnus, W.:1954, Comm. Pure App. Math., VII, 649MathSciNetCrossRefGoogle Scholar
  10. Press, N., Flannery, B., Teukolsky, S. and Vetterling, W.: 1988, Numerical Recipes. Cambridge University Press.zbMATHGoogle Scholar
  11. Rachkowsky, D.: 1962, Izv. Krym. Astrofiz. Obs. 27, 148Google Scholar
  12. Rachkowsky, D.: 1967, Izv. Krym. Astrofiz. Obs. 37, 56Google Scholar
  13. Rees, D., Murphy, G. and Durrant, C.: 1989, Astroph. J., 339, 1093ADSCrossRefGoogle Scholar
  14. Ruiz Cobo, B.:1992, Ph.D. Thesis. Instituto de Astrofísica de Canarias.Google Scholar
  15. Ruiz Cobo, B., Bellot Rubio, L.R. and Collados, M.: 1999, in K.N. Nagendra, J.O. Stenflo (eds.), Solar Polarization, Proc. 2nd SPW, Kluwer, Dordrecht, (in this Volume)Google Scholar
  16. Semel, M. and López Ariste, A.:1999, Astron. Astrophys., 342, 201ADSGoogle Scholar
  17. Stenflo, J.O.:1994, Solar Magnetic Fields — Polarized Radiation Diagnostics, Kluwer, Dordrecht.CrossRefGoogle Scholar
  18. del Toro Iniesta, J.C., and Ruiz Cobo, B.: 1996, in J.O. Stenflo and K.N. Nagendra (eds.), Solar Polarization, Proc. 1st SPW, Kluwer, Dordrecht, p. 169 (also Solar Phys. 164, 169)CrossRefGoogle Scholar
  19. Unno, W.: 1956, Publ. Astron. Spc. Jpn., 8, 108ADSGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • A. López Ariste
    • 1
  • M. Semel
    • 1
  1. 1.DASOPObservatoire de Paris. Section de MeudonParisFrance

Personalised recommendations