Skip to main content

Expression of Cx43 in Cardiac and Aortic Muscle Cells of Hypertensive Rats

  • Chapter
Cardiovascular Specific Gene Expression

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 214))

  • 67 Accesses

Abstract

Gap junctions are seen at sites where the plasma membranes of two adjacent cells become closely apposed [1,2], reducing the intercellular space, which is usually about 200 nm wide, to a narrow gap of 2 nm (figures 1 and 2). In these regions, the two interacting membranes feature specialized microdomains characterized by the concentration of uniformely large protein assemblies named connexons (figures 1 and 2). These structures provide the wall of intercellular channels, that allow for the passage of ions as well as for the exchange from one cell to another of metabolites and second messengers up to lkDa [3,4]. Such a direct cell-to-cell exchange of molecules can be visualized using exogenous tracers, such as Lucifer Yellow [5]. After microinjection into individual cells, the intercellular diffusion of this tracer, which cannot cross the cell membrane, can be directly observed under a fluorescence microscope (figure 2). Gap junction channels are formed by the hexameric assembly of membrane-spanning proteins (figures 1 and 2), known as connexins, which in mammals belong to a family of 13 members [2]. Five of these proteins, referred to as Cx43, Cx45, Cx46, Cx40 and Cx37 have been identified in the cardiovascular system [6,7]. As yet, little is known about their physiological role and their possible changes in cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Meda P. Molecular biology of gap junction proteins. Mol Biol of Diabetes, Part I 1994; 14: 333–56.

    Google Scholar 

  2. Bennett MVL, Barrio LC, Bargiello TA, Spray DC, Hertzberg E, Saez JC. Gap junctions: new tools, new answers, new questions. Neuron 1991; 6: 305–20.

    Article  PubMed  CAS  Google Scholar 

  3. Beyer EC, Goodenough DA, Paul DL. Herzberg EL, Johnson RG, editors.Gap Junction. New-York: Alan R. Liss, 1988; The connexins, a family of related gap junction proteins. p. 167–75.

    Google Scholar 

  4. Loewenstein WR. Junctional intercellular communication. The cell-to-cell membrane channel. Physiol Rev 1981; 61: 829–913.

    PubMed  CAS  Google Scholar 

  5. Haefliger J-A, Waeber G, Meda P. Communication intercellulaire par les canaux jonctionnels “GAP”: Rôle en endocrinologie. Méd Hyg 1997; 55: 270–74.

    Google Scholar 

  6. Haefliger J-A, Bruzzone R, Jenkins NA, Gilbert DJ, Copeland NG, Paul DL. Four novel members of the connexin family of gap junction proteins: molecular cloning, expression and chromosome mapping. J Biol Chem 1992; 267: 2057–64.

    PubMed  CAS  Google Scholar 

  7. Kanter HL, Laing JG, Beyer EC, Green KG, Saffitz JE. Multiple connexins colocalize in canine ventricular myocyte gap junctions. Circ Res 1993; 73: 344–50.

    Article  PubMed  CAS  Google Scholar 

  8. Christ GJ. Modulation of al-adrenergic contractility in isolated vascular tissue by heptanol: A functional demonstration of the potential importance of intercellular communication to vascular response generation. Life Sci 1995; 56: 709–21.

    Article  PubMed  CAS  Google Scholar 

  9. Severs NJ. Pathophysiology of gap junctions in heart disease. J Cardiovasc Electrophys 1994; 5: 462–75.

    Article  CAS  Google Scholar 

  10. Peters NS. Gap Junctions and Clinical Cardiology: from Molecular Biology to Molecular Medicine. Eur Heart J 1997; 18: 1697–702.

    Article  PubMed  CAS  Google Scholar 

  11. Segal SS. Cell-to-Cell communication coordinates blood flow control. Hypertension 1994; 23: 1113–20.

    Article  PubMed  CAS  Google Scholar 

  12. Segal SS, Duling BR. Flow control among microvessels coordinated by intercellular conduction. Science 1986; 234: 868–70.

    Article  PubMed  CAS  Google Scholar 

  13. Larson DM, Haudenschild CC, Beyer EC. Gap junction messenger RNA expression by vascular wall cells. Circ Res 1990; 66: 1074–80.

    Article  PubMed  CAS  Google Scholar 

  14. Christ GJ, Brink PR, Zhao W, Moss J, Gondré CM, Roy C, Spray DC. Gap junctions modulate tissue contractility and alpha adrenergic agonist efficacy in isolated rat aorta. J Pharmacol Exp Ther 1993; 266: 1054–65.

    PubMed  CAS  Google Scholar 

  15. Christ GJ, Spray DC, El-Sabban M, Moore LK, Brink PR. Gap junction in vascular tissues. Evaluating the role of the intercellular communication in the modulation of vasomotor tone. Circ Res 1996; 79: 631–46.

    Article  PubMed  CAS  Google Scholar 

  16. Bruzzone R, Haefliger J-A, Gimlich RL, Paul DL. Connexin40, a component of gap junctions in vascular endothelium, is restricted in its ability to interact with other connexins. Mol Biol Cell 1993; 4: 7–20.

    PubMed  CAS  Google Scholar 

  17. Goldblatt H, Lynch J, Hanzal RF, Summerville WW. Studies on experimental hypertension: production of persistent elevation of systolic blood pression by means of renal ischemia. J Exp Med 1934; 59: 347–79.

    Article  PubMed  CAS  Google Scholar 

  18. Leenen FHH, De Jong W, De Wied D. Renal venous and peripheral plasma renin activity in renal hypertension. Am J Physiol 1973; 225: 1513–18.

    PubMed  CAS  Google Scholar 

  19. Gavras H, Brunner HR, Larah.111, Vaughn ED, Koss M, Cote LJ, Gavras I. Malignant hypertension resulting from deoxycorticosterone acetate and salt excess. Cire Res 1975; 36: 300–09.

    Article  CAS  Google Scholar 

  20. Liu DT, Birchall I, Hewitson T, Kincaid-Smith P, Whitworth JA. Effect of dietary calcium on the development of hypertension and hypertensive vascular lesions in DOCA-salt and two-kidney, one clip hypertensive rats. J Hypert 1994; 12: 145–53.

    Article  CAS  Google Scholar 

  21. Delacrétaz E, Zanchi A, Nussberger J, Hayoz D, Aubert J-F, Brunner HR, Waeber B. Chronic nitric oxyde synthase inhibition and carotid artery distensibility in renal hypertensive rats. Hypertension 1995; 26: 332–36.

    Article  PubMed  Google Scholar 

  22. Haefliger J-A, Castillo E, Waeber G, Bergonzelli GE, Aubert J-F, Sutter E, Nicod P, Waeber B, Meda P. Hypertension increases connexin43 in a tissue-specific manner. Circulation 1997; 95: 1007–14.

    Article  PubMed  CAS  Google Scholar 

  23. Beyer EC, Kistler J, Paul DL, Goodenough DA. Antisera directed against connexin43 peptides react with a 43-KD protein localized to gap junctions in myocardium and other tissues. J Cell Biol 1989; 108: 595–605.

    Article  PubMed  CAS  Google Scholar 

  24. Bastide B, Neyses L, Ganten D, Paul M, Willecke K, Traub O. Gap Junction Protein Connexin40 is preferentially expressed in vascular endothelium and conductive bundles of rat and is increased under hypertensive conditions. Circ Res 1993; 73: 1138–49.

    Article  PubMed  CAS  Google Scholar 

  25. Reaume AG, de Sousa PA, Kulkarni S, Langille BL, Zhu D, Davies TC, Juneja SC, Kidder GM, Rossant J. Cardiac malformation in neonatal mice lacking connexin43. Science 1995; 267: 1831–34.

    Article  PubMed  CAS  Google Scholar 

  26. Gros DB, Jongsma HJ. Connexins in mammalian heart function. Bioessays 1996; 18: 719–30.

    Article  PubMed  CAS  Google Scholar 

  27. Haefliger J-A, Bergonzelli G, Waeber G, Aubert J-F, Nussberger J, Gavras H, Nicod P, Waeber B. Renin and angiotensin II receptor gene expression in kidneys of renal hypertensive rats. Hypertension 1995; 26: 733–37.

    Article  PubMed  CAS  Google Scholar 

  28. Levy BI, Michel J-B, Salzmann J-L, Azizi M, Poitevin P, Safar M, Camilleri J-P. Eff.,ects of chronic inhibition of converting enzyme on mechanical and structural properties of arteries in rat renovascular hypertension. Circ Res 1988; 63: 227–39.

    Article  PubMed  CAS  Google Scholar 

  29. Morishita R, Higaki J, Miyazaki M, Ogihara T. Possible role of the vascular renin-angiotensin system in hypertension and vascular hypertrophy. Hypertension 1992; 19: 62–67.

    Article  Google Scholar 

  30. Yu W, Dahl G, Werner R. The connexin43 gene is responsive to oestrogen. Proc R Soc Lond B Biol Sci 1994; 255: 125–32.

    Article  CAS  Google Scholar 

  31. Chen Z-Q, Lefebvre DL, Bai X-H, Reaume A, Rossant J, Lye SJ. Identification of two regulatory elements within the promoter region of the mouse Cx-43 gene. J Biol Chem 1995; 270: 3863–68.

    Article  PubMed  CAS  Google Scholar 

  32. Petrocelli T, Lye SJ. Regulation of transcripts encoding the myometrial gap junction protein, connexin-43, by estrogen and progesterone. Endocrinology 1993; 133: 284–90.

    Article  PubMed  CAS  Google Scholar 

  33. Piersanti M, Lye SJ. Increase in messenger ribonucleic acid encoding the myometrial gap junction protein, connexin-43, requires protein synthesis and is associated with increased expression of the activator protein-1, c-fos. Endocrinology 1995; 136: 3571–78.

    Article  PubMed  CAS  Google Scholar 

  34. Lefebvre DL, Piersanti M, Bai X-H, Chen Z-Q, Lye SJ. Myometrial transcriptional regulation of the gap junction gene, connexin-43. Reprod Fertil Devel 1996; 7: 603–11.

    Article  Google Scholar 

  35. Taubman MB, Berk BC, Izumo S, Tsuda T, Alexander RW, Nadal-Ginard B. Angiotensin II induces c-fos mRNA in aortic smooth muscle. J Biol Chem 1989; 264: 526–30.

    PubMed  CAS  Google Scholar 

  36. Naftilan AJ, Pratt RE, Eldridge CS, Lin HL, Dzau VJ. Angiotensin II induces c-fos expression in smooth muscle via transcriptional control. Hypertension 1989; 13: 706–11.

    Article  PubMed  CAS  Google Scholar 

  37. Delacrétaz E, Hayoz D, Osterheld MC, Genton CY, Brunner HR, Waeber B. Long-term nitric oxyde synthase inhibition and distensibility of carotid artery in intact rats. Hypertension 1994; 23: 967–70.

    Article  PubMed  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Haefliger, JA., Meda, P. (1999). Expression of Cx43 in Cardiac and Aortic Muscle Cells of Hypertensive Rats. In: Doevendans, P.A., Reneman, R.S., van Bilsen, M. (eds) Cardiovascular Specific Gene Expression. Developments in Cardiovascular Medicine, vol 214. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9321-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9321-2_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5189-9

  • Online ISBN: 978-94-015-9321-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics