Advertisement

A Tunnel Through the Earth

  • R. Hooykaas
Chapter
  • 189 Downloads
Part of the Boston Studies in the Philosophy of Science book series (BSPS, volume 205)

Abstract

When the University of St Andrews was founded in 1410 its first rector was Lawrence of Lindores (circa 1437). All historians of the university mention that he was also ‘Inquisitor of heretical pravity’ — the main inquisitor of the kingdom of Scotland— and that, as such, one of his unattractive features was his zeal in bringing Lollards to the stake.1 If the prior of St Mary’s had had his way there would have been even more victims, for he wrote to Lawrence an admonitory letter (1418) richly larded with quotations from Scripture and from pious writers, chiding him for his laxity and ominously imputing to him a tendency to heresy himself.2

Keywords

Natural Place Chapter Versus Heavy Body Heavenly Motion Centre Ofthe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. 1.
    J. Maitland, ‘The Beginnings of St Andrews University 1410–1418’, in: Scottish Historical Review 8 no. 31 (1911). At Lawrence’s instigation in 1406 at Perth the first martyr fire was kindled in Scotland (p.239).Google Scholar
  2. 2.
    James Haiderstone, Copiale Prioratus Sancti Andrée (The letter book of James Haiderstone, Prior of St Andrews, 1418–1443) J.H. Baxter ed. Oxford 1930, pp.3, 382–384.Google Scholar
  3. 3.
    Acta Facultatis Artium Universitatis Sancti Andrée 1413 - 1586. A.J. Dunlop ed. Edinburgh- London 1964, p. 12.Google Scholar
  4. 4.
    Albert of Saxony brought this doctrine to Cologne; Heinrich of Langenstein to Vienna.Google Scholar
  5. 3.
    K. Michalski, ‘Les Courants philosophiques à Oxford et à Paris pendant le XlVe Siècle’, in: Bull. Intern, des Sciences et des Lettres de l’Académie Polonaise, Année 1916,p.88.Google Scholar
  6. 6.
    Acta Facultatis, pp.48–49.Google Scholar
  7. 7.
    See e.g. W.H. Wallace, O.P., Causality and Scientific Explanation. Ann Arbor 1972, p.82, who speaks of Thomas’s knowledge of ‘projective geometry’ as revealed by his proving the rotundity of the earth by its casting a round shadow on the moon. In fact this just repeats Aristotle’s arguments (Aristotle, De Coelo Bk.II, ch.14; 297b24ff.).Google Scholar
  8. 8.
    Petrus Apianus, Cosmographia, Antwerpen 1539: ‘Coelum empireum habitaculum dei et omnium electorum.’Google Scholar
  9. 8a.
    Rembertus Dodonaeus. Cosmographia in Astronomiam et Geographiam. Isagoge, Antwerpen 1548: ‘Coelum Empyreum, Beatorum sedes et habitaculum.’ Thomas Digges, who let the heaven of the fixed stars extend to infinity, had no difficulty in identifying this starry heaven with the dwelling-place of the elect.Google Scholar
  10. 8b.
    Thomas Digges, A Perfit Description of the Caelestiall Orbes. London 1576: ‘This orbe of starres fixed infinitely up extendeth itself in altitude sphericallye…, the habitacle for the elect.’Google Scholar
  11. 9.
    Aristotle’s Prime Mover is a passive ‘final cause’ and not a working ‘efficient cause’.Google Scholar
  12. 10.
    It need hardly be said that at the same time the omnipotence of God was maintained. Medieval theologians were keenly aware of the fact that all their speaking about God was but a ‘stammering’ in an often inconsistent way.Google Scholar
  13. 11.
    Thomas Aquinas, Summa contra Gentiles, Bk.II, qu.98, art.l. In: Opera Omnia XII, Romae 1901, suppl. p.213.Google Scholar
  14. 12.
    E.g. in Francisco Maurolyco, Cosmographia (1535), dial.I, Introd.Google Scholar
  15. 12a.
    Daniel Schwenter, Deliciae Physico-mathematicae, Nuremberg 1636, Tl.III, Auffgab XVI, p. 186. In Dante’s Inferno (14th cent.) Lucifer is seated on a throne at the centre of the earth. Dante’s opinion that extreme cold reigns there (so that Lucifer is up to his waist in ice) is, however, quite exceptional (Dante, Inferno, XXXIV 11.70–111).Google Scholar
  16. 13.
    Thomas Aquinas, Summa contra Gentiles. Bk.II, ch. 1; ch.2.Google Scholar
  17. 14.
    Aristotle, De Coelo, Bk.I, ch.2.Google Scholar
  18. 15.
    Thomas Aquinas, Summa Theologica, Bk.III, suppl. qu.97, art.7, n.2. (Opera Omnia XII, p.243).Google Scholar
  19. 16.
    Ibidem, qu.98, art. 1 (Opera Omnia XII, p.243).Google Scholar
  20. 17.
    J. Ciarisse ed., Sterre- en natuurkundig onderwijs, gemeenlijk genoemd: Natuurkunde van het geheel-al, en gehouden voor het Werk van zekeren Broeder Gheraert, Leiden 1847.Google Scholar
  21. 18.
    ‘Nu wil ic u doen ghewach/Waer die helle wesen mach/Bi scrifturen proef men wel/Dat si niewel el/Dan in midden van ertrike/Dats in centro sekerlike’ (Clarisse ed., Natuurkunde van het Geheel-ahp.m, 11.1701–1706).Google Scholar
  22. 19.
    ‘… et la plus basse chose et la plus parfonde qui soit au monde est li poins de la terre, ce est li milieu dedans, qui est apelez abismes, là où enfers est assis’ (see: P. Duhem, Le Système du Monde IX, p. 127).Google Scholar
  23. 20.
    ‘… quanto espaço ha… daqui ao centro do mundo e ao meio do inferno dos condenados, que he a medida do cemidiametro’ (D. Joao de Castro, Tratado da Spaera. In: Obras Complétas de D. Joào de Castro, A. Cortesâo and L. de Albuquerque ed., Vol.I, Coimbra 1968, p.63).Google Scholar
  24. 21.
    Ibidem (Obras I, pp.58–59).Google Scholar
  25. 22.
    Alphius: Plumbum nunquam perveniret ad centrum nisi liquefactum’ (Erasmus, Colloquia, Basel 1533; In: Opera Desiderii Erasmi Roterodami…. Ordinis Primi Tomus Tertius, Amsterdam 1972, pp.714–715.)Google Scholar
  26. 23.
    Aristotle, De Coelo, Bk.II, ch.7, 289a24–25.Google Scholar
  27. 24.
    Johannes Buridanus, Quaestiones super Libros Quattuor de Coelo et Mundo, Bk.II, qu.16. Quoted from edition E.A. Moody, Cambridge, Mass. 1942, p.204.Google Scholar
  28. 25.
    Johannes Buridanus, Quaestiones super Libros Quattuor de Coelo et Mundo, III, qu.16 (Moody p.200)Google Scholar
  29. 26.
    Plutarch (circa 47 - circa 120), Moralia; quoted by L. Thorndike, A History of Magic and Experimental Sciences, New York 1929, Vol.I, p.219.Google Scholar
  30. 27.
    Adelard of Bath, De Eodem et Diverso, ch.48; Quaestiones Naturales, eh. 13–14 (cf Thorndike, A History of Magic and Experimental Sciences, Vol.11, p.35). Vincentius Bellovacensis, Speculum Naturale, VII, 7 (cf CS. Lewis, The Discarded Image, an Introduction to Medieval and Renaissance Literature, Cambridge 1964, p. 141). For al-Khwazimi, see Clagett, The Science of Mechanics in the Middle Ages, Madison 1961, pp.58, 60.Google Scholar
  31. 28.
    ‘… toda a coisa pesada em sumo grau, deseja o centro, e ali folga e cessa de se mover’ (Guia de Munique, ch.I. In: L. Mendonça de Alberquerque, Os Guias Nauticos de Munique e Evora, Lisboa 1965,p.l61). Cf Castro, Obras I,p.l20.Google Scholar
  32. 29.
    Cf R. Hooykaas, Das Verhältnis von Physik und Mechanik in historischer Hinsicht, Wiesbaden 1963, p. 10Google Scholar
  33. 29a.
    R. Hooykaas, Religion and the Rise of Modern Science, Edinburgh 1972, eh.III, pp.56–59.Google Scholar
  34. 30.
    P. Duhem, études sur Léonard de Vinci, Vol.Ill, Paris 1955, p.24.Google Scholar
  35. 31.
    Aristotle, Physica, Bk.VII, ch.5.Google Scholar
  36. 32.
    M.A. Hoskin and A.G. Molland, ‘Swineshead on Falling Bodies: an Example of Fourteenth Century Physics’, in: Brit. Journ. Hist. Sei 3 (1966), pp.150–182. The tract ‘De loco elementi’ is part of ’Liber Calculationum’, written after 1328.Google Scholar
  37. 33.
    Thomas Bradwardine, His Tractatus de Proportionibus (1328). H.L. Crosby transi, and ed., Madison 1954, pp.110–116.Google Scholar
  38. 33a.
    Cf M. Clagett, The Science of Mechanics in the Middle Ages, Madison 1961, pp.437ff.. In cap.III: ‘The proportion of the velocities of motions follows the proportion of the power of the mover to the power of the moved thing’ (Clagett, ibidem, p.438).Google Scholar
  39. 34.
    Hoskin and Molland, ‘Swineshead on Falling Bodies’, p.438.Google Scholar
  40. 35.
    A. Maier, An der Grenze von Scholastik und Naturwissenschaft, Essen 1943, ch.2, pp.288–348Google Scholar
  41. 35a.
    ’Oresme’s Methode der graphischen Darstellung’. Anneliese Maier introduced the phrase ‘the mechanization of the world picture’ (A. Maier, Die Mechanisierung des Weltbildes im 17. Jahrhundert, Leipzig 1938).Google Scholar
  42. 35b.
    See A. Maier, Zwei Grundprobleme der scholastischen Natur philosophie, 2. Aufl. Roma 1951, p.88 n.1.Google Scholar
  43. 36.
    Michalski, ‘La Physique nouvelle et les différents Courants philosophiques au XlVe Siècle’, in: Bull. Intern. Acad. Polon. Sei., Cl. Lettres; (Année 1927), p. 157.Google Scholar
  44. 37.
    Nicole Oresme, Tractatus de Configurationibus Qualitatum, P.I, ch.22. Cf Duhem, Le Système du Monde Vol. VII, pp.582, 585. Cf Maier, Zwei Grundprobleme, p.105.Google Scholar
  45. 38.
    Duhem, Le Système du Monde, Vol.VII, pp.583, 585; Maier, Zwei Grundprobleme, p. 108.Google Scholar
  46. 39.
    On the other hand it shows some affinity with the ancient theory of ‘signatures’; the sympathy between things of the same shape, which led to such ideas as that liverwort (agrimony; hepatica) is a cure for liver disease. For now the ‘configurations’ of certain ‘occult qualities’ of precious stones etc., are effective on similar ‘configurations’ of bodies or parts of bodies.Google Scholar
  47. 40.
    Henricus de Hassia, Tractatus de Reductione Ejfectuum Specialium in Virtutes Communes et Causas Générales, ch.l, 23, 25 (quoted from Duhem, Le Système du Monde, VII, pp.589; 594, 598). See also Duhem, Le Système du Monde, VII, p.585. For Oresme see: Maier, Zwei Grundprobleme, p. 108.Google Scholar
  48. 41.
    Henricus de Hassia, ibidem, ch. 1 (quoted from Duhem, Le Système du Monde, VII, pp.587–588).Google Scholar
  49. 42.
    William of Ockham (circa 1320), however, considered motion as just a sequence of places occupied by the moving body; once a body possesses motion it will keep it; the projectile is its own motor and not some implanted force of the air. If the air were the moving cause, what then would happen when two arrows moving along the same path in opposite directions are meeting? (Ockham, Sentent., II, qu.l8;26. Cf Maier, Zwei Grundprobleme, pp.155, 157.Google Scholar
  50. 43.
    See for similar conceptions in the Arab and Latin Middle Ages: Clagett, The Science of Mechanics, pp.510ff;520,523.Google Scholar
  51. 44.
    K. Michalski, ‘La Physique nouvelle’, p. 157. Lawrence, however, wanted to save Aristotle as well as the phenomena, for at the same time he tried to twist the Philosopher into conformity with the impetus theory. One of his followers at Erfurt (’Magister de Stadiis’) wrote: ‘Others say, with Londorius, that when the Philosopher [Aristotle, RH] says that the projectile is moved by the air, this does not refer to the efficient cause properly so called, but to the necessarily accompanying cause (causa sine qua non)’ (Physica Bk.VIII, qu.l 1, quoted by Michalski, ibidem, p. 158.). That is, the presence of air is an indispensible condition for the motion, but the motion’s cause is the impetus. Evidently Londorius thought that Buridan went too far in his abstractions.Google Scholar
  52. 45.
    Buridanus, Quaestiones super Libros Quattuor de Coelo et Mundo, Bk.II, qu. 12 (Moody p. 180).Google Scholar
  53. 46.
    Johannes Buridanus, Quaestiones super Octo Phisicorum Libros Aristotelis, Parisiis 1509, Bk.VIII, qu.12,fol.CXXI,col.l.Google Scholar
  54. 47.
    Cf E.J. Dijksterhuis, De Mechanisering van het Wereldbeeld, Amsterdam 1950, Pt.II, §113 (pp.201–202), criticised Maier’s arguments against this comparison (cf Maier, Die Vorläufer Galileis im U.Jahrhundert, Roma 1949, pp.141 ff).Google Scholar
  55. 48.
    Buridan, Quaestiones de Coelo et Mundo, Bk. II, qu.l2 (Moody p. 180); —, Questiones Phisicorum, Bk.VIII, qu.l2. fol.CXXr, col.2.Google Scholar
  56. 49.
    Oresme, Le Livre du Ciel et du Monde, Bk.II, ch.2. (A.D. Menut and J. Denomy ed. London: Madison 1968,p.285).Google Scholar
  57. 50.
    Buridan, Quaestiones Phisicorum, Bk.VIII, qu. 12, fol.CXXIr, col.2.Google Scholar
  58. 51.
    Gravity continually impresses impetus on falling bodies, and as their downward motion increases this impetus (impetus accidentalis) they will move swifter, and the swifter motion gives a greater impetus, etc., so that they fall with an accelerating velocity (Buridan, Questiones Phisicorum, Bk.VIII, qu.12, fol.CXXvs, col.2; Buridan, Quaestiones de Coelo et Mundo, Bk.II, qu.l2 (Moody pp. 180–181).Google Scholar
  59. 52.
    Buridan, Quaestiones de Coelo et Mundo, Bk.I V, ch.7. (Moody p.267).Google Scholar
  60. 53.
    Buridan, Quaestiones Phisicorum, Bk.VIII, ch.12.Google Scholar
  61. 54.
    Oresme, Le Livre du Ciel et du Monde, Bk.II, ch.31 (Menut and Denomy, p. 172)Google Scholar
  62. 55.
    Oresme, ibidem, Bk.I, ch. 18, (Menut and Denomy, p. 144.)Google Scholar
  63. 56.
    Oresme, Quaestiones de Spera. Quoted by Clagett, The Science of Mechanics, p.553.Google Scholar
  64. 57.
    Albert of Saxony, De Coelo, Bk.II, qu.14; cf P. Duhem, Le Système du Monde, VIII, 291; Clagett, The Science of Mechanics, pp.566; 569.Google Scholar
  65. 5.
    Cf Bradwardine, De Proportionibus, ch.3 (Crosby pp.11 off.); Crosby says of Bradwardine’s ‘law’ that ‘it is an axiom rather than a theorem’ (p.38).Google Scholar
  66. 59.
    The first suggestion that the motion of a falling body is uniformly accelerated was made at a very late date (1555); see Clagett, The Science of Mechanics, pp.555–556.Google Scholar
  67. 60.
    Buridan, Quaestiones Phisicorum, 1.VII, qu.8, ed. Paris 1509, fol.CVIIIvs, col. 1.Google Scholar
  68. 61.
    Oresme, Le Livre du Ciel et du Monde, Bk.I, ch.29 (Menut and Denomy p. 196).Google Scholar
  69. 62.
    L. Vives, De Causis Corruptarum Artium, I.V. Quoted from: Vives, Opera, Basileae 1555, Vol.1, p.410.Google Scholar
  70. 63.
    G. Sarton, Introduction to the History of Science, Vol.III, Baltimore 1947, p.737.Google Scholar
  71. 64.
    ‘… qui pene modum excessit ingenii humani’ (J.C. Scaliger, Exotericarum Exercitationum, Libri XV ad Hieronymum Cardanum (1557). exerc.324. (ed. Francofurti 1612, p. 1028). Cf exerc.340 (p. 1068); exerc.22 (p. 104); exerc.28 (p.131).Google Scholar
  72. 65.
    Scaliger, Exotericarum Exercitationum, exerc. 16,4 (p.83).Google Scholar
  73. 66.
    Erasmus, Colloquia (Opera, pp.714–715). (Cf above, p. 124n.22).Google Scholar
  74. 67.
    Francisco Maurolyco, Cosmographia (1535). Quoted from ed. 1543, Dialogus I. See P. Duhem, Etudes sur Léonard de Vinci, Vol.III, pp. 195–196. He says that only those without a sound knowledge of the problem will say that the stone immediately stops at the centre. The impetus of its weight, however, makes it pass the centre and perform oscillations which become smaller as the impetus gradually diminishes. In the same way a weight hanging from a cord, when displaced from the vertical position will perform diminishing oscillations finally stopping at the vertical position. The partner in the dialogue recognizes that this speculation is supported by a well-chosen illustration and reminds the other speaker of Erasmus’ Colloquia. Google Scholar
  75. 68.
    N. Tartaglia, Nova Scientia, Venice 1537, Bk.I. prop.I (transi, by S. Drake in: S. Drake and J.E. Drabkin ed., Mechanics in Sixteenth Century Italy, Madison 1969, p.76).Google Scholar
  76. 69.
    J.B. Benedetti, Diversarum Speculationum Mathematicarum et Physicarum Liber, Torino 1585, p.369 (tranls. by S. Drake, in: S. Drake and J.E. Drabkin ed., Mechanics in Sixteenth Century Italy, Madison 1969, p.235).Google Scholar
  77. 70.
    Galileo Galilei, Dialogo sopra i Due Massimi Sistemi del Mondo, Tolomaico e Copernicano, Argentorati 1632. Reprint in: Opere VII, pp.27–546. Quotations from —, The System of the World in Four Dialogues. Wherein the two Grand Systems of Ptolemy and Copernicus are Largely Discoursed… in: Thos Salisbury, Mathematical Collections and Translations Vol.1, London 1661, p.117.Google Scholar
  78. 71.
    Ibidem (Salisbury, p.207).Google Scholar
  79. 72.
    The navigator D. Joäo de Castro held (1538) that a leaden ball, dropped into a hole passing through the earth’s centre, ‘when arrived at the centre, would halt as if it were hanging there, quiet and at ease, without going any farther. The reason for this is that all heavy things descend to the middle, which is the centre, and if thence they would go farther this would be not descension but ascension’ (D. Joäo de Castro, Tratado da Esfera. In: Obras I, pp.58–59). Cf R. Hooykaas, Science in Manueline Style, Coimbra 1980, p.31. Towards the end of the century (1592) the Netherlandish pilot and nautical writer Lucas Jansz Waghenaer (1553 - 1606) held that a stone would fall to the centre of the earth (were it not impeded by the solidity of the earth) and would remain there hanging and at rest (L J. Waghenaer, Thresoor derZeevaert, Leyden 1592, Bk.III, p. 196). The Altdorf professor of physics Daniel Schwenter, who was one of the pioneers in the introduction of experiments in the university teaching of physics, was in general a faithful follower of Aristotle, ‘this miracle man’ (D. Schwenter, Deliciae Physico-mathematicae (1636), p.390), e.g. when attributing some influence of the air in propelling a projected body (p. 188) and when holding that the heavier a body is, the faster it will fall (p.391). On the topic of the stone falling into a hole that pierces the Earth, however, he took the side of Maurolyco and Walther Ryff (who followed Maurolyco) and held that the stone would oscillate until it came to rest at the centre of the universe. He also made the comparison with the pendulum (Vol.Ill, Auffgab.XVIII, p. 187). These differing examples clearly show that ancient ideas linger on alongside the new ones which — thanks to the selection we make when depicting the progress of science — are often believed to have been completely ousted long since.Google Scholar
  80. 73.
    William Gilbert, De Mundo Nostro Sublunari Philosophia Nova. (Opus posthumum) Amstelodami 1651, Bk.II,ch. 10, pp.96, 154.Google Scholar
  81. 74.
    Gilbert, De Mundo Nostro Sublunari Philosophia Nova, Bk.II, ch.10, pp.32, 142, 147, 154, 164.Google Scholar
  82. 75.
    Gilbert, De Mundo Nostro Sublunari Philosophia Nova, pp.47, 48, 61. See also Gilbert, De Magnete, Magneticisque Corporibus, et de Magnete Tellure, Physiologia Nova, Londini 1600, pp.29, 65, 216, 219.Google Scholar
  83. 76.
    Francis Bacon, Sylva Sylvarum or a Natural History (1627), cent.I, 33.Quoted from Bacon, Works, Spedding, Ellis and Heath ed., London 1854, Vol.11, p.354.Google Scholar
  84. 77.
    Bacon, Sylva Sylvarum. Google Scholar
  85. 78.
    Bacon, Novum Organum (1620), Pt.II, XXXV (Works I, p.292.)Google Scholar
  86. 79.
    Mersenne, Harmonie Universelle, Paris 1636, Bk.II, prop.XII, pp. 128–129.Google Scholar
  87. 80.
    Mersenne, Novum Organum (1620), Bk.III, prop.XX, coroll. 1, p.208.Google Scholar
  88. 81.
    Mersenne, Novum Organum (1620), Bk.III, prop.XX, coroll.3, p.209.Google Scholar
  89. 82.
    Mersenne, Novum Organum (1620), p.209.Google Scholar
  90. 83.
    Mersenne, Novum Organum (1620).Google Scholar
  91. 84.
    Isaac Beeckman, Journal, 23 Nov - 26 Dec 1618, C.de Waard éd. La Haye 1939, Vol.1, p.264.Google Scholar
  92. 85.
    Beeckman, Journal (1614), (De Waard Vol.1, p.44).Google Scholar
  93. 86.
    Cf E.J. Dijksterhuis, Val en Worp, Groningen 1924, pp.311–313.Google Scholar
  94. 87.
    Cf Dijksterhuis, ibidem, p.375.Google Scholar
  95. 88.
    Isaac Newton, Philosophiae Naturalis Principia Mathematica, Londini 1687, Bk.I, sect.l 1. p.162. Cf: ‘I shall therefore… treat of the motion of bodies attracting each other, considering the centripetal forces as attractions; though perhaps physically speaking, they may more truly be called impulses’ (ibidem). Google Scholar
  96. 89.
    Philosophiae Naturalis Principia Mathematica, 3rd edn. London 1726, Bk.I, sect.l 1. Scholium. Quoted from: —, Sir Isaac Newton’s Mathematical Principles of Natural Philosophy and his System of the World, F. Cajori ed., Berkeley 1947, p. 192.Google Scholar
  97. 90.
    Philosophiae Naturalis Principia Mathematica, 3rd edn. Bk.I, prop..LXXIV, theorem XXXIV (Cajori, p. 197).Google Scholar
  98. 91.
    Philosophiae Naturalis Principia Mathematica, 3rd edn. Bk.I, prop.LXXIII, theorem XXXIII (Cajori, p. 196). Cf. props.LXX and LXXII (Cajori, p. 193).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • R. Hooykaas
    • 1
  1. 1.UtrechtThe Netherlands

Personalised recommendations