Advertisement

Cleopatra’s Nose

  • R. Hooykaas
Chapter
  • 211 Downloads
Part of the Boston Studies in the Philosophy of Science book series (BSPS, volume 205)

Abstract

‘The nose of Cleopatra: had it been shorter, the face of the entire world would have been changed.’1 This famous aphorism of Pascal’s — all the more memorable for the pun it contains — raises a much-debated question which has its relevance for the history of science: does history inexorably run its course, determined mainly by social and economic forces describable in terms of fixed socio-historical laws or is it rather capriciously determined by contingencies like the sudden death of a prince without legitimate offspring, the murder of a prospective heir to the throne by the hand of a madman, or a natural disaster that devastates a country? A shorter nose would not only have defaced the face of Cleopatra, it could have changed the political face of the world. For Mark Antony might not have fallen in love with this last Queen of Egypt; his conflict with Caesar Octavian would then have taken a different form; the history of the Roman empire and consequently that of Western Europe might have followed a quite different course.

Keywords

Atomic Weight Simple Body Elastic Fluid Short Nose History Ofscience 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

  1. 1.
    Blaise Pascal, Pensées, fr. 162.Google Scholar
  2. 2.
    Voltaire, Elèmens de la Philosophie de Neuton, nouv. éd. Londres 1741, pp.8–9: ‘Confidens du Très-Haut, Substances éternelles,/Qui brûlez de ses feux, qui couvrez de vos aîles/Le Trône où votre Maître est assis parmi vous,/Parlez, du grand Neuton n’étiez-vous point jaloux?’Google Scholar
  3. 3.
    Herman Boerhaave, De Comparando Certo in Physicis, Lugduni Batavorum 1715: ‘… Newtonum nostri miraculum seculi’ (p. 13); ‘… a Principi omnium Philosophorum Isaaco Newton’ (p.8).Google Scholar
  4. 4.
    D. Mornet, Les Sciences de la Nature en France au XVIIIe Siècle, Paris 1911, p.85.Google Scholar
  5. 5.
    Henry Brougham in: Edinburgh Review 24 Oct 1803, vol III; 6th ed.1810, p.3.Google Scholar
  6. 6.
    R.J. Haiiy, Traité élémentaire de Physique, 3. ed., Vol.11, Paris 1821. Newton’s emission theory is to be preferred (§999, p. 149); Biot’s ‘polarisation mobile’ is accepted (§1426, p.406).Google Scholar
  7. 7.
    John Dalton, A New System of Chemical Philosophy, Vol.1, Pt.I, Manchester 1808; Vol I, Pt.II. Manchester 1810; Vol II, Pt.I, Manchester 1827.Google Scholar
  8. 8.
    Isaac Newton, Philosophiae Naturalis Principia Mathematica, Londini 1687, Bk.II, prop.23. theorema 17, p.301. See chapter VIII, notes 53 - 56.Google Scholar
  9. 9.
    See for Euler and Daniel Bernoulli below, note 37.Google Scholar
  10. 10.
    William Higgins, A Comparative View of the Phlogistic and Antiphlogistic Theories, London 1789.Google Scholar
  11. 11.
    John Dalton, ‘A New Theory of the Constitution of Mixed Aeriform Fluids and Particularly of the Atmosphere’, in: Nicholson s Journal 5 (1801), p.241.Google Scholar
  12. 12.
    ‘Consequently when a vessel contains a mixture of two such elastic fluids, each acts independently upon the vessel, with its proper elasticity, just as if the other were absent, whilst no mutual action between the fluids themselves is observed’ (Dalton. A New System I, p. 154).Google Scholar
  13. 13.
    Dalton, A New System 1, p. 168. Of course the term ‘demonstrated’ is not correct! In a lecture at the Royal Institution on 27th Jan 1810 Dalton stressed again the Newtonian basis of his theory. See the reprint in H.E. Roscoe and A. Harden, A New View of the Origin of Dalton’s Atomic Theory, London 1896, pp. 13–18.Google Scholar
  14. 14.
    Dalton, A New System I, p. 168.Google Scholar
  15. 15.
    Dalton, A New System I, p.214Google Scholar
  16. 16.
    Dalton’s Notebook I, d.d. 21 March 1803 (Roscoe and Harden, A New View, p.34).Google Scholar
  17. 17.
    Dalton’s Notebook I (Roscoe and Harden, A New View, p.38).Google Scholar
  18. 18.
    Dalton did not use such formulae; he represented elementary atoms by pictorial symbols as in figure 50 and not by letters as was done afterwards.Google Scholar
  19. 19.
    Dalton’s Notebook, 6 September 1803 (Roscoe and Harden, A New View, p.28, pl.3).Google Scholar
  20. 20.
    Dalton, A New System I, p. 188. Cf Dalton’s Notebook, 14 September 1804 (Roscoe and Harden, A New View, p.65).Google Scholar
  21. 21.
    ‘… gases do not unite in equal or exact measures in any one instance; when they appear to do so, it is owing to the inaccuracy of our experiments. In no case, perhaps, is there a nearer approach to mathematical exactness, than in that of 1 measure of oxygen to 2 of hydrogen; but here, the most exact experiments I have ever made, gave 1.97 hydrogen to 1 oxygen’ (Dalton, A New System 1.2, p.559); Dalton’s Notebook I, 6 September 1803 (Roscoe and Harden, A New View, p.28).Google Scholar
  22. 22.
    Dalton’s Notebook II, 1809. See W.W.H. Gee, H.F. Coward and A. Harden on Dalton’s lectures and lecture illustrations, in: Manchester Memoirs 59 (1915), p.46.Google Scholar
  23. 23.
    Dalton, A New System 1.2, pp.558, 433.Google Scholar
  24. 24.
    Dalton, A New System 1.2, p.550.Google Scholar
  25. 25.
    Like Dalton, Avogadro meant by the volume of a particle that of the particle proper plus its heat mantle. ‘L’hypothèse … qui paraît même la seule admissible, est de supposer que le nombre des molécules intégrantes dans des gaz quelconques, est toujours le même à volume égal, ou est toujours proportionnel aux volumes’ (A. Avogadro, ‘Essai de déterminer les Masses relatives des Molécules élémentaires des Corps, et les Proportions selon lesquelles elles entrent dans ces Combinaisons’, in: Journal de Physique, de Chimie et d’Histoire Naturelle 73 (1811), p.58).Google Scholar
  26. 26.
    ‘… les molécules constituantes d’un gaz simple quelconque … ne sont pas formés d’une seule molécule élémentaire, mais résultent d’un certain nombre de ces molécules réunies en une seule par attraction’ (Avogadro, ‘Essai’, p.60).Google Scholar
  27. 27.
    ‘… les molécules constituantes d’un gaz simple quelconque … ne sont pas formés d’une seule molécule élémentaire, mais résultent d’un certain nombre de ces molécules réunies en une seule par attraction’ (Avogadro, ‘Essai’,, p.61. The possibility that splitting the molecule of a simple body might yield 4, or 6, etc. atoms is left open.Google Scholar
  28. 28.
    Dumas, in: Ann. Ch. Phys. [2] 33 (1826), pp.337ff; 49 (1832), p.210; 50, p.170.Google Scholar
  29. 29.
    Avogadro now, by analogy, supposed that all simple bodies consist of biatomic molecules (S2, C2, P2, etc): ‘L’analogie tirée des autres combinaisons dont nous avons déjà parlé, où il y a en général redoublement de volume, ou partage de la molécule en deux, nous porte à supposer qu’il en est de même de celle dont il s’agit, c’est à dire, que le volume du gaz de soufre est la moitié de celui de l’acide sulfureux’ (Avogadro, ‘Essai’, p.66). 1 volume sulphur vapour + 2 volumes oxygen gas -> 2 volumes sulphurous acid gas; [i.e. S2 +2 02 -> 2 S02]Google Scholar
  30. 30.
    M.A. Gzuém, Ann. Ch. Phys. [2] 52 (1833), p.l 13.Google Scholar
  31. 31.
    Ch. Gerhardt. Ch. Phys. [3] 7 (1843), p.129; 8, p.238.Google Scholar
  32. 32.
    In 1846 A. Laurent (Ann. Ch. Phys. [3] 18, 2, 66) based the molecular weights and the molecular formulae of all substances (elementary as well as compound) on the assumption that the molecular weight is twice the vapour density, but (like Avogadro himself) he pushed analogy too far, and regarded as biatomic not only the molecules of hydrogen, nitrogen, oxygen and chlorine, but also those of potassium (K2), zinc, mercury, etc, so that the formulae of their oxides were sometimes correct (H2O, K2O) but in other cases wrong (Zn23 instead of ZnO; Hg20 for red mercury oxide instead of HgO). In 1853 -1856 Ch. Gerhardt followed Laurent.Google Scholar
  33. 33.
    Bineau (1839) found for the vapour of ammonium chloride only half the expected density, which seemed to contradict Avogadro’s law. He rightly explained this by dissociation, which led to duplication of the volume (NH4CI - NH3 +HC1).Google Scholar
  34. 34.
    A. Kékulé, Lehrbuch der organischen Chemie oder der Chemie der Kohlenstoffverbindungen I, Erlangen: Enke 1861, p.58. J.J. Berzelius (Jahresberichte 13 (1834), p.185) made a distinction between the ‘empirical’ formula (i.e. the direct result of chemical analysis into the simple bodies) and the ‘rational’ formula, which said something about the grouping of the parts of a (compound) molecule. For example, the empirical formula of the alcohol molecule is C2H6O, whereas the rational formula depended on the author’s theoretical views: either C2H4O + H2O, or: C2H6 + O. He recognised that the choice is difficult and that, besides the uncertainty about the molecular weight, this was another reason for the confusion in organic chemistry. (See also Gerhardt’s conception on pp.254–257 of chapter VII.)Google Scholar
  35. 35.
    A. Kékulé, Die wissenschaftlichen Ziele und Leistungen der Chemie. Bonn 1878, p.7.Google Scholar
  36. 36.
    Stanislao Cannizzaro, Sunto di un Corso di Filosofia Chimica (’Epitome of a Course of Chemical Philosophy’). German ed. by Lothar Meyer, Abriss eines Lehrganges der theoretischen Chemie, von S. Cannizzaro, Ostwalds Klassiker der exacten Wissenschaften, nr.30.Google Scholar
  37. 37.
    Such mathematical-physical kinetic theories had been put forward by Leonhard Euler, ‘Tentamen Explicationis Phaenomenorum Aeris’, in: Comm. Acad. Sc. Imp. Petropol. 1727, 2 (1729) pp.347ff (cf R. Hooykaas, ‘The First Kinetic Theory of Gases’, in: Arch. Intern. Hist. Sei. 2 (1948) pp. 180- 4). Shortly afterwards Daniel Bernoulli (Hydrodynamica, Argentorati 1738, sect.X, pp.200–3), supposed the ‘air’ to consist of perfectly elastic particles in translatory motion. Their impact on the wall of the vessel caused the pressure. Like Euler he could derive Boyle’s law on the basis of his hypothesis. The kinetic theory of gases was revived by J. Herapath (Annals of Phil. (1821), pp.273ff.; 340ff.; 401ff.) and by J.P. Joule (1848) (Manchester Memoirs 9 (1851), pp.l07ff).Google Scholar
  38. 38.
    A. Krönig (Pogg. Ann. 99 (1856), pp.315ff.) from his hypotheses derived not only Boyle’s law but also the thesis that equal volumes of different gases contain the same number of molecules. In the article ‘Grundzüge einer Theorie der Gase’ he expresses it as follows: ‘von verschiedenen Gasen sind bei gleichem Druck und gleicher Temperatur in gleichem Raum gleich viele Atome enthalten’ (ibidem, p.318).Google Scholar
  39. 39.
    Rudolph Clausius, ‘über die Art der Bewegung, welche wir Wärme nennen’, in: Pogg. Ann. 100 (1857), pp.497–507. Clausius’ theory was much more sophisticated than Krönig’s. He attributed not only a translatory motion to the particles but also a rotational motion and, within poly-atomic molecules, intramolecular vibrations.Google Scholar
  40. 40.
    Rudolph Clausius, ‘über die Art der Bewegung, welche wir Wärme nennen’, in: Pogg. Ann. 100 (1857),, p.369. Clausius admitted the possibility that molecules of some simple bodies in the gaseous state (e.g. sulphur, phosphorus) contain more than 2 atoms; he hoped that chemistry would shed light on the abnormal vapour pressures and the numbers of atoms per molecule (p.370).Google Scholar
  41. 41.
    Clausius, in: Pogg. Ann. 103 (1858), p.645.Google Scholar
  42. 42.
    J.J. Waterston, ‘On the Physics of Media that are Composed of Free and Perfectly Elastic Molecules in a State of Motion’ [Received by the Royal Society 11 Dec. 1845 and published in the] Phil. Transact. 183 (1892), A, pp.Iff, by Lord Rayleigh, seer. R.S. The quotation is from: J.S. Haldane ed., The Collected Scientific Papers of John James Waterston. Edinburgh 1928, pp.207–317, q.v. p.230.Google Scholar
  43. 43.
    Examples of partition of molecules into 2 atoms were hydrogen, nitrogen, oxygen, chlorine, bromine, iodine; into 4 parts, arsenic and phosphorus; into 6 parts, sulphur (Waterston, ‘On the Physics’ (Scientific Papers, pp.230–1)).Google Scholar
  44. 44.
    J.J. Waterston, ‘On the Theory of Sound’, in: Phil. Mag. Suppi 16 (1858) (reprint in Collected Scientific Papers, p.348. The references are to Newton’s Principia Mathematica, Bk.II, prop.23 and to the beginning of Bk.III. See also chapter VII). The paper having been presented to the Royal Society, a referee was of the opinion that ‘the paper is nothing but nonsense, unfit even for reading before the Society’ (Collected Scientific Papers, p.209). J.S. Haldane, the editor of Waterston’s Collected Scientific Papers, considered it a misfortune that the paper was not printed when it was written, for it shadows forth many of the ideas of modern chemistry and it might have hastened their reception by chemists (p.211).Google Scholar
  45. 45.
    Clausius, in: Pogg. Ann. 103 (1858), p.645.Google Scholar
  46. 46.
    Lothar Meyer in his German edition of Cannizzaro’s Sunto. Google Scholar
  47. 47.
    Acids (principes salifiants [SO3, N2O5, etc.]) consist of oxygen plus a non-metallic element; their opposites are ‘bases’ (bases salifiables [e.g. CaO, CuO]). The combination of acids and bases (in modern terms one would say, acid anhydrides and basic oxides) yields salts. The names of the salts express the genus (the acid) and the species (the metal) in the Linnaean fashion: sulfate de cuivre [CuS04], sulfate de plomb [PbS04], nitrate de plomb [Pb(N03)2]. See A.L. Lavoisier, Traité élémentaire de Chimie, 2. ed., Vol.1, Paris 1793, Ch.XVI, p. 163.Google Scholar
  48. 48.
    Dumas found that the transformation of acetic acid into chloro-acetic acid is not an essential change (Comptes Rendus Ac. Sei. 1 (1838), p.444). He further expounds this (Comptes Rendus Ac. Sei 8 (1839), p.629): ‘… le chlore en prenant la place de l’hydrogène, n’a rien changé aux propriétés du composé, qu’il fut acide, corps neutre ou base …’ It is interesting that with Dumas the morphological approach plays an important role: in inorganic chemistry we are guided by ’isomorphism’ (which does not have to agree with electrodualism), and in organic chemistry the substitution theory plays the same role. (For a brief survey of the development of chemical theory in the first half of the 19th century, see R. Hooykaas, ‘Die Chemie in der ersten Hälfte des 19. Jahrhunderts’, in: Technikgeschichte 33 nr.l (1966), pp. 1–24; reprinted in: W. Treue and K. Mauel ed., Naturwissenschaft, Technik und Wirtschaft im 19. Jahrhundert, Vol.II, Göttingen 1976, pp.587–613Google Scholar
  49. 48a.
    and in: R. Hooykaas, Selected Studies in the History of Science, Coimbra 1983, pp.215–51).Google Scholar
  50. 49.
    R.G. Collingwood, The Idea of History [circa 1940], Oxford 1961, p.80.Google Scholar
  51. 50.
    Robert Mayer, ‘über Auslösung’, in: Staatsanzeiger fur Württemberg, 1876. Repr. in: J.J. Weyrauch ed., Die Mechanik der Wärme, in: Gesammelte Schriften von Robert Mayer, 3. ed., Stuttgart 1893,pp.440ff.Google Scholar
  52. 51.
    Blaise Pascal pointed out that a little ‘grain of sand’ in the ‘ureter’ caused Cromwell’s death (and the restoration of the British monarchy) (Pensées, fr. 176).Google Scholar
  53. 52.
    Collingwood, Tlte Idea of Histoiy. Shortly after the first publication of Collingwood’s book, the ‘general historian’ Herbert Butterfield wrote (1949) that the so-called scientific revolution ‘outshines everything since the rise of Christianity and reduces the Renaissance and Reformation to the rank of mere episode …’. looming large ‘as the real origin both of the modern world and of the modern mentality …’ (Butterfield, T)\e Origins of Modern Science, London 1950, p. VIII). A similar claim (without the reservation of the rise of Christianity) has been made for the rise of 19th century evolutionism (oddly enough by a Jesuit priest circa 1940).Google Scholar
  54. 53.
    Collingwood, The Idea ofHistoty. Google Scholar
  55. 54.
    Pascal, Preface to Traité du Vide (1647); quoted from: L. Brunschvicg ed., Oeuvres de Blaise Pascal, Vol.II, Paris 1914,2.ed. 1923, pp. 127–145.Google Scholar
  56. 55.
    Pascal, ibidem (Oeuvres II, p. 145).Google Scholar
  57. 56.
    Forbes’s response was given in two lectures at Edinburgh University (1848): J.D. Forbes, The Danger of Superficial Knowledge, London 1849.Google Scholar
  58. 57.
    Robert Boyle (1626 – 1691) declared that he collected experiments ‘for more philosophical heads to explicate’ (Boyle, ‘Proemial Essay’ to his Physiological Essays (1661)).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • R. Hooykaas
    • 1
  1. 1.UtrechtThe Netherlands

Personalised recommendations