Advertisement

Works of Nature, Works of Art

  • R. Hooykaas
Chapter
  • 194 Downloads
Part of the Boston Studies in the Philosophy of Science book series (BSPS, volume 205)

Abstract

We have contrasted scientific theories that claim to represent the reality of nature with those that are just useful fictions establishing connections between phenomena, without any claim to physical truth (chapter VIII). We now tackle a related problem — the comparing of natural products with similar ones made by human art.* In the case of chemical compounds, minerals and rocks, for instance, we could try to find out their composition by means of chemical analysis and then confirm this analysis by a synthesis out of the components. Supposing we find that human art is indeed capable of making things produced also by nature, immediately the question arises: can we find a procedure to make a natural product (e.g. sugar), minerals or rocks in the same way as nature does?

Keywords

Human Mind Analogical Reasoning Natural Counterpart Artificial Production Vital Force 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

  1. 1.
    Aristotle, Metaphysica, Bk.XII, ch.3, 2070a.Google Scholar
  2. 2.
    Aristotle, Metaphysics Bk.VII, ch.7, 1032a-b.Google Scholar
  3. 3.
    Aristotle, Metaphysics, Bk.VII, ch.9, 1034a.Google Scholar
  4. 4.
    Aristotle, Metaphysics Bk.VII, ch.7, 1032a.Google Scholar
  5. 5.
    Aristotle, Physica, Bk.II, ch.8, 199a.Google Scholar
  6. 6.
    AxisloWc, Physica, Bk.II, ch.8, 199b.Google Scholar
  7. 7.
    Cicero, De Re Publica, Bk.III, ch.22Google Scholar
  8. 8.
    Cicero, Orator II, 7.Google Scholar
  9. 9.
    P. de la Ramée, Dialectique, Paris 1555, p.4; quotation from edition M. Dassonville, Genève 1964, p.63. Cf his posthumous work: P. Ramus, Commentationes de Religione Christiana Libri Quattuor. Francofurti 1576, Bk.I, ch.l. See also: R. Hooykaas, Humanisme, Science et Réforme — Pierre de la Ramée (1515 — 1572). Leiden: Brill 1958, p.25.Google Scholar
  10. 10.
    P. Ramus, Geometria (1569), Bk.I. (Lazarus Schoner ed.) Francofurti 1627, p.l. Hooykaas, Humanisme, p.25.Google Scholar
  11. 11.
    ... non pas l’art seullet mais beaucoup plus l’exercice d’icelluy et la practique faict l’artisan’ (Ramus, Dialectique, p. 136 (ed. Dassonville p. 153)).Google Scholar
  12. 12.
    ‘Et vauldroit beaucoup mieux avoir l’usage sans art que l’art sans usage’ (Ramus, Dialectique, Bk.II, p. 139 (ed. Dassonville p. 155)).Google Scholar
  13. 13.
    Cf Ramus, Scholae Mathematicae 1569 (Lazarus Schoner ed. Francofurti 1599), Bk.IV, p. 109.Google Scholar
  14. 14.
    ‘… la souveraine lumière de raison’ (Ramus, Dialectique, Bk.II (ed. Dassonville p. 155)).Google Scholar
  15. 15.
    Ramus, Dialecticae Institutiones (1543), fol.3 vs.Google Scholar
  16. 16.
    ‘Naturalis autem dialectica, id est, ingenium, ratio, mens, imago parentis omnium rerum Dei, lux denique beatae illius, et aeternae lucis aemula, hominis propria est, cum eoque nascitur’ (ibidem, fol.6r).Google Scholar
  17. 17.
    Ramus, Dialectique, Bk.II, p. 135 (ed. Dassonville p. 153).Google Scholar
  18. 18.
    Ibidem, p. 139 (ed. Dassonville p. 155).Google Scholar
  19. 19.
    Ramus, Dialecticae Institutiones, fol.6r, 5 vs.Google Scholar
  20. 20.
    Ibidem, fol.6r.Google Scholar
  21. 21.
    Ibidem, fol.6vs. The consultation of the sponaneous use of dialectics was recommended by some later Ramists. So the New England philosopher Alexander Richardson asserted that logical reasonings are correct when they prove themselves ‘true by the practice of common people’. Cf P. Miller, The New England Mind. New-York 1939, p. 144.Google Scholar
  22. 22.
    Ibidem, fol.l5r, 44r.Google Scholar
  23. 23.
    Ramus, Actio pro Regia Mathematicae Professions Cathedra, Habita in Senatu 3 Id. Martis anno 1566. In: Collectaneae Praefationes, Epistolae, Orationes 1577, p.522. Cf Hooykaas, Humanisme, p.94.Google Scholar
  24. 24.
    This has been demonstrated by J.J. Verdonk, Petrus Ramus en de Wiskunde. Dissertation Amsterdam VU. Assen 1966, pp.117–118.Google Scholar
  25. 25.
    Johannes Kepler, Harmonice Mundi. Linciae Austriae 1619. (Gesammelte Werke VI, p.82). Ramus and his follower Willebrord Snel (1591 — 1626) made, in Kepler’s opinion, ‘an architect into a wood merchant’ (p. 19). Kepler himself, on the other hand, did not want the tenth book of Euclid for ’making up the account of merchandise but for explaining the causes of things.’ Cf Hooykaas, Humanisme, p.63.Google Scholar
  26. 26.
    Ramus has been considered as anticipating Descartes as well as Francis Bacon, but both statements should be taken with much reservation. Descartes’s deductive rationalism and Bacon’s experimentalist empiricism are quite different from Ramus’ utilitarianism. Bacon, who studied in Ramist Cambridge, had little sympathy for Ramism, though he shared its predilection for the applied sciences.Google Scholar
  27. 27.
    Olivier de Serres, Théâtre de l’Agriculture. Préface, p.6. Quoted from the edition Lyon 1675.Google Scholar
  28. 28.
    Olivier de Serres, Théâtre de l’Agriculture. Préface, p.4.Google Scholar
  29. 29.
    Olivier de Serres, Théâtre de l’Agriculture. Préface.Google Scholar
  30. 30.
    Olivier de Serres, Théâtre de l’Agriculture. Préface, p.5.Google Scholar
  31. 31.
    In particular the more refined viniculture he advised to be entrusted only to educated people and not to ignorant peasants whose taste is as rude as their understanding (ibidem, lib.III, ch.6., p. 177).Google Scholar
  32. 32.
    Ramus, Oratio de sua Professione. In: Collectanea, p.526. For Ramus’ astronomical ideas see Hooykaas, Humanisme, ch.9 and Hooykaas, G.J. Rheticus’ Treatise, ch.8.Google Scholar
  33. 33.
    See: R. Hooykaas, G J. Rheticus’ Treatise, ch.8: ‘Rheticus, Ramus and the Copernican Hypotheses’.Google Scholar
  34. 34.
    Kepler, Harmonice Mundi, Bk.IV, ch. 1, p 223.Google Scholar
  35. 35.
    Miller, The New England Mind, pp. 146–9.Google Scholar
  36. 36.
    That the 16th century Puritans were ‘somehow grotesque, elderly people, outside the main current of life’ the late prof. CS. Lewis called wan absurd idea’: ‘In their own day they were considered, of course, the very latest thing…’ (C.S. Lewis, English Literature in the Sixteenth Century, excluding Drama, Oxford 1954, p.43).Google Scholar
  37. 37.
    Milton’s re-writing of Ramus’ Dialectica appeared in 1672 (Miller, The New England Mind, p. 118).Google Scholar
  38. 38.
    ‘Fundatur igitur Geometria in praxi Mechanica — et nihil aliud est quam Mechanicae universalis pars ilia quae artem mensurandi accurate proponit ac demonstrat’ (Isaac Newton, Principia Mathematica. Praefatio ad lectorem).Google Scholar
  39. 39.
    ‘At eius picturam, non poësim videmus … qui motus hominum, qui ferarum non ita epictus est, ut quae ipse non viderit nos ut videremus effecerit’, Cicero, Tusculan Disputations Bk.V, 39, 114 (quoted from Hooykaas, ‘Humanities’, p.9 n.35).Google Scholar
  40. 40.
    Horace, De Arte Poetica, line 361. Reference from Hooykaas, ‘Humanities’, p.9 n.36.Google Scholar
  41. 41.
    Plato, Republica Bk.X, 596–598Google Scholar
  42. 42.
    Plato, Republica Bk.X, 596, 597b-e, 598b. We should realize that Plato regarded manual workers as inferior to philosophers (men of science), while the Renaissance artists yearned to be recognized as cultivators of a ‘science’ rather than of a mere (manual) art.Google Scholar
  43. 43.
    L.B. Alberti, De Re Aediflcatoria, Bk.VI, ch.2; ed. Parisiis 1512, fol.81.Google Scholar
  44. 44.
    Ramus, Dialecticae Institutions (1543), 7vs. Apelles, according to Plutarch the only painter whom Alexander the Great allowed to make his portrait, was considered the greatest painter of Antiquity. Ramus (and also Francisco de Holanda) speaks as if he is sure of the quality of Apelles’ work, but it should be realized that he had to resort to Pliny’s reports.Google Scholar
  45. 45.
    ‘imitari pingendo conemur’ (ibidem). Google Scholar
  46. 46.
    ‘imitari pingendo conemur’, 56vs.Google Scholar
  47. 47.
    Francisco de Holanda, Da Pintura Antiqua (J. de Vasconcellos ed. Porto 1918) Bk.II, dial.II, p.209.Google Scholar
  48. 48.
    Francisco de Holanda, Da Pintura Antiqua (J. de Vasconcellos ed. Porto 1918) Bk.II, dial.II, p.209.Google Scholar
  49. 49.
    Francisco de Holanda, Da Pintura Antiqua (J. de Vasconcellos ed. Porto 1918) Bk.II, dial.II, p.211Google Scholar
  50. 50.
    Francisco de Holanda, Da Pintura Antiqua (J. de Vasconcellos ed. Porto 1918) Bk.II, dial.II, Bk.II, dial.II, p.208.Google Scholar
  51. 51.
    Francisco de Holanda, Da Pintura Antiqua (J. de Vasconcellos ed. Porto 1918) Bk.II, dial.II, Bk.I, ch.14, p.98.Google Scholar
  52. 52.
    Francisco de Holanda, Da Pintura Antiqua (J. de Vasconcellos ed. Porto 1918) Bk.II, dial.II, Bk.I,ch.l5,p.99.Google Scholar
  53. 53.
    Francisco de Holanda, Da Pintura Antiqua (J. de Vasconcellos ed. Porto 1918) Bk.II, dial.II, Bk.I, ch.2, p.66.Google Scholar
  54. 54.
    Francisco de Holanda, Ao Rei Dom Sebastiäo, De quanto Serve a Sciencia do Desenho e Entendimento da Arte da Pintura na Republica Crista, asi na Paz como na Guerra. In: Da Fabrica que Fallece à Cidade Lisbao. Da Sciencia do Desenho, ed. J. de Vasconcellos, Porto 1879, p.6 (fol. 16).Google Scholar
  55. 55.
    Bacon, Novum Organum I, p.7 (fol.37v).Google Scholar
  56. 56.
    Aristotle, Physica, Bk.II, ch.8, 199al5ff.Google Scholar
  57. 57.
    For Sala see R. Hooykaas, Het Begrip Element in zijn historisch-wijsgeerige Ontwikkeling. Utrecht 1933, pp.148–153, 155–157.Google Scholar
  58. 58.
    Henri Langenstein, Tractatus de Reductione Effectuum Specialium. Quoted by P. Duhem, Le Système du Monde, Vol.VII, Paris, repr. 1954, pp.597–598.Google Scholar
  59. 59.
    Francis Bacon, Novum Organum, Bk.I, aph.88. (In: Works, Spedding, Ellis and Heath ed., London 1857–1874; Vol.1, p.195.Google Scholar
  60. 60.
    Francis Bacon, New Atlantis (Works III, pp. 157–159).Google Scholar
  61. 61.
    Bacon, Novum Organum I, aph.3 (Works I, pp.157, 144).Google Scholar
  62. 62.
    Bacon, Novum Organum I, aph.4 (Works I, p. 157).Google Scholar
  63. 63.
    Bacon, De Augmentis II, ch.2 (Works 1, p. 196). Also: —, Descriptio Globi Intellectualis, ch.2 (Works III, p.730); —, Novum Organum I, aph.66, 75 (Works I, pp.177, 184).Google Scholar
  64. 64.
    Bacon, Historia Naturalis et Experimentalis (Works II, p. 14).Google Scholar
  65. 65.
    ‘Et sane nullae sunt in Mechanica rationes, quae non etiam ad Physicam, cujus pars vel species est, pertineant: nee minus naturale est horologio, ex his vel illis rotis composito, ut horas indicet, quam arbori ex hoc vel illo semine ortae, ut tales fructus producat’ (René Descartes, Principia Philosophiae, P.IV, sect.203; Oeuvres VIII, p.326).Google Scholar
  66. 66.
    J.F. Henckel, Pyrytologie, ou Histoire naturelle de la Pyrite. Transi, from German original. Paris 1760, p.298. In fact the direct interaction of iron and sulphur yields (black) ferrous sulphide [FeS] and not brass-coloured pyrite [FeS2].Google Scholar
  67. 67.
    J.F. Henckel, Pyrytologie, ou Histoire naturelle de la Pyrite. Transi, from German original. Paris 1760, ch.l3,p.297.Google Scholar
  68. 68.
    J.F. Henckel, Pyrytologie, ou Histoire naturelle de la Pyrite. Transi, from German original. Paris 1760, p.298. Elementary particles form a ‘mixture’; mixta form a ‘compositum’; composita form a ‘decompositum’. Henckel refuses, however, to enter into the problem which are the ingredients that form iron (or sulphur) and which are those forming natural pyrite (p.294).Google Scholar
  69. 69.
    J.F. Henckel, Pyrytologie, ou Histoire naturelle de la Pyrite. Transi, from German original. Paris 1760, pp.295–297.Google Scholar
  70. 70.
    J.F. Henckel, Pyrytologie, ou Histoire naturelle de la Pyrite. Transi, from German original. Paris 1760,ch.i4,p.331.Google Scholar
  71. 71.
    J.F. Henckel, Pyrytologie, ou Histoire naturelle de la Pyrite. Transi, from German original. Paris 1760, pp.330–1.Google Scholar
  72. 72.
    J.F. Henckel, Pyrytologie, ou Histoire naturelle de la Pyrite. Transi, from German original. Paris 1760, p.363.Google Scholar
  73. 73.
    J.F. Henckel, Pyrytologie, ou Histoire naturelle de la Pyrite. Transi, from German original. Paris 1760, ch.l3,p.293.Google Scholar
  74. 74.
    G.G. Leibniz, Protogaea, sive de Prima Facie Telluris Antiquissimae Historiae Vestigiis in ipsis Naturae Monumentis Dissertatio. Göttingae 1749, par.9–10: ‘Opera pretium autem facturum arbitror, qui naturae effecta ex subterraneis eruta diligentius conférât cum foetibus laboratoriorum (sic enim Chymicorum officinas vocamus) quando mira persaepe in ratis et factis similitudo apparet.’ Also sect.9, p. 18, sect. 10, p.28.Google Scholar
  75. 75.
    G.G. Leibniz, Protogaea, sive de Prima Facie Telluris Antiquissimae Historiae Vestigiis in ipsis Naturae Monumentis Dissertatio. Göttingae 1749,, sect. 10, p.22: ‘cui montes sunt pro Alembicis, Vulcani pro furnis.’Google Scholar
  76. 76.
    G.G. Leibniz, Protogaea, sive de Prima Facie Telluris Antiquissimae Historiae Vestigiis in ipsis Naturae Monumentis Dissertatio. Göttingae 1749,, sect.9, p. 18: ‘neque enim aliud est natura, quam ars quaedam magna, nee semper toto génère a nativis factitia distinguuntur; nec refert eandemne rem Daedalus aliquis vulcanius in furno invenibus an lapicida ac terrae visceribus proférât in lucem.’Google Scholar
  77. 77.
    Nicolas Leblanc, De la Cristallotechnie, ou Essai sur les Phénomènes de la Cristallisation … Paris, an X — 1802. Leblanc was the inventor of the industrial process for making soda (1791 — 92, p.72).Google Scholar
  78. 78.
    G.G. Leibniz, Protogaea, sive de Prima Facie Telluris Antiquissimae Historiae Vestigiis in ipsis Naturae Monumentis Dissertatio. Göttingae 1749,, p.65; cfp.VIII.Google Scholar
  79. 79.
    G.G. Leibniz, Protogaea, sive de Prima Facie Telluris Antiquissimae Historiae Vestigiis in ipsis Naturae Monumentis Dissertatio. Göttingae 1749,, $.82.Google Scholar
  80. 80.
    G.G. Leibniz, Protogaea, sive de Prima Facie Telluris Antiquissimae Historiae Vestigiis in ipsis Naturae Monumentis Dissertatio. Göttingae 1749,, p.VI-II.Google Scholar
  81. 81.
    G.G. Leibniz, Protogaea, sive de Prima Facie Telluris Antiquissimae Historiae Vestigiis in ipsis Naturae Monumentis Dissertatio. Göttingae 1749,, p.X.Google Scholar
  82. 82.
    G.G. Leibniz, Protogaea, sive de Prima Facie Telluris Antiquissimae Historiae Vestigiis in ipsis Naturae Monumentis Dissertatio. Göttingae 1749,, p.73.Google Scholar
  83. 83.
    Gay-Lussac, ‘Réflexions sur les Volcans’, in: Ann. Chim. Phys. 22 (1823), pp.415–429.Google Scholar
  84. 84.
    E. Mitscherlich, ‘über künstliche Krystalle von Eisenoxyd’, in: Ann. der Physik und Chemie 1829, pp.630–632.Google Scholar
  85. 85.
    Letter quoted by K.C. von Leonhard, Hüttenerzeugnisse und andere auf künstlichem Wege gebildete Mineralien als Stütz-Puncte geologischer Hypothesen. Stuttgart 1858, p.63.Google Scholar
  86. 86.
    C.W.C. Fuchs, ‘Die künstlich dargestellten Mineralien …’, in: Natuurkundige Verhandelingen der Hollandsche Maatschappij der Wetenschappen. 3e reeks dl.I, Haarlem 1872, p.3.Google Scholar
  87. 87.
    Cf H. de Sénarmont, ‘Expériences sur la Formation des Minéraux par Voie humide dans les Gîtes métallifères concrétionnés’, in: Comptes Rendus Ac. Sei 32 (1851), p.409.Google Scholar
  88. 88.
    Durocher, Comptes Rendus Ac. Sei 32 (1851), p.8: ‘C’est en combinant les résultats obtenus en laboratoire avec l’étude géologique des caractères propres aux divers gîtes, que l’on peut apprécier la manière dont ces phénomènes se sont passés dans l’intérieur de la terre.’Google Scholar
  89. 89.
    J. Hall, Transact. RSE 3 (1790), pp.9–11; ‘Experiments on Whimstone and Lava’, in: Transact. RSE 5(1798),p.43,59.Google Scholar
  90. 90.
    The phenomenon of devitrification of glass had been observed before, e.g. by Reaumur, but it had not been recognized as ‘cristallisation’ (Cf Dartigues, ‘Mémoire sur la Dévitrification du Verre’, in: J. d. Physique 59 (1804), p.6–8).Google Scholar
  91. 91.
    J. Hutton, Theory of the Earth with Proofs and Illustrations, Vol.1, Edinburgh 1795, p.25. Quoted by Hall, ‘Experiments on Whimstone and Lava’, Trans. RSE 5 (1798), p.45.Google Scholar
  92. 92.
    Hall, ‘Experiments on Whimstone and Lava’, p.45.Google Scholar
  93. 93.
    J.F. d’Aubuisson de Voisins, Traité de Géognosie, Vol.I, Strasbourg-Paris 1814, pp.XXX-XXXI.Google Scholar
  94. 94.
    Hall, ‘Experiments on Whimstone and Lava’, pp.48, 56, 59,43,45.Google Scholar
  95. 95.
    Hall, ‘Experiments on Whimstone and Lava’, p.6S. Google Scholar
  96. 96.
    Hall, Transact. RSE6(\805), or 5 (1802), p.74.Google Scholar
  97. 97.
    Hall, Transact. RSE6, p.76.Google Scholar
  98. 98.
    J. Hall, ‘Account of a Series of Experiments, Shewing the Effects of Compression in Modifying the Action of Heat’, in: Transact. RSE 6(1812).Google Scholar
  99. 99.
    Ibidem, pp.152, 173.Google Scholar
  100. 100.
    Gregory Watt, ‘Observations on Basalt, and on the Transition from the Vitreous to the Stony Texture, which Occurs in the Gradual Refrigeration of Melted Basalt; with some Geological Remarks’, in: Phil. Trans. London (1804), pt.II, pp.279 ff.Google Scholar
  101. 101.
    Dartigues, ‘Mémoire sur la Dévitrification du Verre. Et les Phénomènes qui arrivent pendant sa Cristallisation’, in: J. d. Physique 59 (1804), p.13.Google Scholar
  102. 102.
    Fleuriau de Bellevue, ‘Mémoire sur l’Action du Feu dans les Volcans, sur divers Rapports entre leurs Produits, ceux de nos Fourneaux, les Météorites, et les Roches primitives’, in: J. d. Phys. 60 (1805), an XIII, pp.409–470.Google Scholar
  103. 103.
    Ibidem, pAil. Google Scholar
  104. 104.
    Fleuriau de Bellevue, ‘Mémoire sur l’Action du Feu dans les Volcans, sur divers Rapports entre leurs Produits, ceux de nos Fourneaux, les Météorites, et les Roches primitives’, in: J. d. Phys. 60 (1805), an XIII, p.418.Google Scholar
  105. 105.
    Fleuriau de Bellevue, ‘Mémoire sur l’Action du Feu dans les Volcans, sur divers Rapports entre leurs Produits, ceux de nos Fourneaux, les Météorites, et les Roches primitives’, in: J. d. Phys. 60 (1805), an XIII, p.453.Google Scholar
  106. 106.
    Fleuriau de Bellevue, ‘Mémoire sur l’Action du Feu dans les Volcans, sur divers Rapports entre leurs Produits, ceux de nos Fourneaux, les Météorites, et les Roches primitives’, in: J. d. Phys. 60 (1805), an XIII, p.459.Google Scholar
  107. 107.
    Fleuriau de Bellevue, ‘Mémoire sur l’Action du Feu dans les Volcans, sur divers Rapports entre leurs Produits, ceux de nos Fourneaux, les Météorites, et les Roches primitives’, in: J. d. Phys. 60 (1805), an XIII, pM2. Google Scholar
  108. 108.
    J.A.L. Hausmann, 10 February 1816 in the ‘Versammlung der K. Wissenschaftlichen Sozietät zu Göttingen’ (quoted by Von Leonhard in: Hüttenerzeugnisse). Google Scholar
  109. 109.
    Von Leonhard, Hüttenerzeugnisse. Google Scholar
  110. 110.
    Fleuriau de Bellevue, ‘Mémoire sur l’Action’, p.411.Google Scholar
  111. 111.
    Th. Scheerer, ‘Discussion sur la Nature Plutonique du Granite et des Silicates cristallisés qui s’y rallient’, in: Bull. Soc. Géol. de France 4, pp.468–496. Cf K.A.von Zittel, Geschichte der Geologie und der Paléontologie. München 1899, p.749. See also: Th. Scheerer, Der Paramorphismus, Braunschweig 1854.Google Scholar
  112. 112.
    Daubrée, études et Experiences synthétiques sur le Métamorphisme et sur la Formation des Roches cristallisées. Paris 1859.Google Scholar
  113. 113.
    Daubrée, études et Experiences synthétiques sur le Métamorphisme et sur la Formation des Roches cristallisées, p.IX.Google Scholar
  114. 114.
    Daubrée, études et Experiences synthétiques sur le Métamorphisme et sur la Formation des Roches cristallisées, p.U3-\l5. Google Scholar
  115. 115.
    Daubrée, études et Experiences synthétiques sur le Métamorphisme et sur la Formation des Roches cristallisées, p. 147. It should be noticed that it had long been recognized that the same minerals and rocks could have dissimilar origins. As H.H. Read (The Granite Controversy. London 1957) put it: ’there are granites and granites.’Google Scholar
  116. 116.
    F. Fouqué and Michel Levy, Synthèse des Minéraux et des Roches, Paris 1882, p.6: ‘… l’union de la cristallographie, de la chimie et de la géologie … cette triple alliance.’Google Scholar
  117. 117.
    F. Fouqué and Michel Levy, Synthèse des Minéraux et des Roches, Paris 1882, p.6: ‘… l’union de la cristallographie, de la chimie et de la géologie … cette triple alliance, p.63.Google Scholar
  118. 118.
    N. Desmarest, ‘Sur l’Origine et la Nature du Basalte à grandes Colonnes polygones, déterminées par l’Histoire naturelle de cette Pierre, observée en Auvergne’, in: Mém. Acad. Sei. Paris 1771, 87 (1774), pp.705–775. It is interesting that this staunch defender of the igneous (volcanic) origin of basalt maintained, against Hutton, the neptunistic conception of the origin of granite. See: Encyclopédie Méthodique, Vol.1, Paris, an III (1794), pp.749, 752, 756.Google Scholar
  119. 119.
    A.F. Fourcroy, Système des Connaissances chimiques, et leurs Applications aux Phénomènes de la Nature et de l’Art. Vol.VII, Paris, an IX, sect.7, pp.5–7, 54–55.Google Scholar
  120. 120.
    Thenard, Traité de Chimie élémentaire théorique et pratique, Vol.III, 3.éd. Paris 1821, pp.3–4.Google Scholar
  121. 121.
    F. von Kobell, Vergleichende Betrachtungen über die Mannigfaltigkeit in der organischen und anorganischen Natur. München 1836, p.12. Lamarck went much further: according to his ‘pyrotic theory’ all compounds tend to disintegrate into their components; the existence of composite bodies is due to their organic origin. The ‘pouvoir de la vie’ is a force acting against the general ‘tendance de la nature’ to decomposition (J.B. Lamarck, Réfutation de la Théorie pneumatique ou de lanouvelle Doctrine des Chimistes modernes. Paris an IV, p. 12). Also: J.B. Lamarck, Recherches sur les Causes des principaux Faits physiques. Paris an II (1795), Vol.II, p.273, 289, 27. Also: J.B. Lamarck, Hydrogéologie, Paris an X, p. 100: ‘…. les Principes de tout composé quelconque ont une tendance à se dégager’. ‘L’action organique des corps vivans forme sans cesse des combinaisons qui n’eussent jamais existé sans cette cause’ (pp. 105, 117).Google Scholar
  122. 122.
    F. Wöhler, ‘über die künstliche Bildung von Harnstoff’, in: Pogg. Ann. Phys. 12 (1828), p.25. Cf Wöhler to Berzelius, 22 February 1828 (quoted by C. Graebe, Geschichte der organischen Chemie I, Berlin 1920, p.55).Google Scholar
  123. 123.
    Ch. Gerhardt, Précis de Chimie organique, Vol.I, Paris 1844, pp. 1–3.Google Scholar
  124. 124.
    Ch. Gerhardt, Traité de Chimie organique, Vol.I, Paris 1853, p.l.Google Scholar
  125. 125.
    Ch. Gerhardt, Traité de Chimie organique, Vol.I,p.l.Google Scholar
  126. 126.
    Ch. Gerhardt, Traité de Chimie organique, Vol.I, p.4.Google Scholar
  127. 127.
    Ch. Gerhardt, Traité de Chimie organique, Vol.I, p.3.Google Scholar
  128. 128.
    R. Hooykaas, ‘Die Chemie in der ersten Hälfte des 19. Jahrhunderts’, in: Technikgeschichte 33, nr. 1(1966), pp. 1–24.Google Scholar
  129. 129.
    J.F. Daniell, An Introduction to the Study of Chemical Philosophy. 2. ed., London 1843, p.3.Google Scholar
  130. 130.
    In: Marcellin Berthelot, Science et Philosophie. Paris 1886, p.66.Google Scholar
  131. 131.
    In: Marcellin Berthelot, Science et Philosophie. Paris 1886, p.67.Google Scholar
  132. 132.
    In: Marcellin Berthelot, Science et Philosophie. Paris 1886, p.64.Google Scholar
  133. 133.
    Galileo Galilei, Discorsi (1638). Quoted from —, Discourses and Demonstrations Touching Two New Sciences In: Thomas Salusbury, Mathematical Collections and Translations, Vol.II, London 1665, p.3.Google Scholar
  134. 134.
    A.L. Lavoisier, Traité de Chimie, 2. ed., Vol.I, Paris 1793, p.69.Google Scholar
  135. 135.
    Ptolemy, The Almagest, Bk.XIII, ch.2. Quoted after the translation in ed. Encyclopaedia Britannica, Chicago 1952, p.429Google Scholar
  136. 136.
    Willem Jansz. Blaeu, Tweevoudigh Onderwijs van de Hemelsche en Aerdsche Globen; Het een na de Meyning van Ptolemeus met een vasten Aerdkloot; Het ander na de natuerlijcke Stelling van N. Copernicus met een loopenden Aerdkloot. Amsterdam: Joan. Blaeu 1666. The Latin translation appeared as: Philolai, sive Dissertationis de Vero Systemate Mundi (4 vols.). Amsterdam: Guil. & Iohannem Blaeu 1639. See also chapter VI, ‘And the Sun stood still’.Google Scholar
  137. 137.
    Gulielmus Gilbertus, De Magnete, Londini 1600, Bk.I, ch.3, p.12: ‘… forma sphaerica perfectissime et cum terra globosa maxime consentit.’Google Scholar
  138. 138.
    Gulielmus Gilbertus, De Magnete, Londini 1600, Bk.I, ch.3, p. 13.Google Scholar
  139. 139.
    Gulielmus Gilbertus, De Magnete, Londini 1600, Bk.I, ch.3.VI,ch.l,ch.4.Google Scholar
  140. 140.
    Gulielmus Gilbertus, De Magnete, Londini 1600, Bk.I, ch.3, lib.VI, ch.4, p.223: ‘Omitto quod Petrus Peregrinus constanter affirmât, terrellam … moved circulariter intégra volutatione 24 horis! Quod tarnen nobis adhuc videre non contigit.’Google Scholar
  141. 141.
    Gulielmus Gilbertus, De Magnete, Londini 1600, Bk.I, ch.3, lib.II, ch.2, p.60: ‘The electric motion is the motion of conservation of matter; the magnet motion is that of arrangement and order. The matter of the terrestrial globe is brought together and held together by itself electrically. The earth’s globe is directed and revolved magnetical.’Google Scholar
  142. 142.
    Gulielmus Gilbertus, De Magnete, Londini 1600, Bk.I, ch.3, lib.IV,ch.2,p.l55.Google Scholar
  143. 143.
    Gulielmus Gilbertus, De Magnete, Londini 1600, Bk.I, ch.3, Bk.II,ch.35,p.l03.Google Scholar
  144. 144.
    Gulielmus Gilbertus, De Magnete, Londini 1600, Bk.I, ch.3, lib.VI, ch.4, pp.223–224.Google Scholar
  145. 145.
    Beeckman had seen this through Andreas Colvius (Kolff), the Reformed minister in the Netherlands’ embassy in Venice. The work was not printed before 1780, but the theory was mentioned in Galileo’s Dialogues on the Two World Systems (1632). Cf ed. Salusbury, Vol.1, Dialogue IV, p.380.Google Scholar
  146. 146.
    C. de Waard ed., Journal tenu par Isaac Beeckman, Vol.III, Den Haag 1945, p.206 (12 April 1631). Beeckman proposed to make groves on the surface, representing the Atlantic Ocean, in order to check whether the revolutions cause ebb and flow twice every 24 hours. It should be noticed that Galileo rejected the explanation by influence of the moon and the sun, and that he even criticized Kepler for adhering to such a non-mechanical explanation: ‘I more wonder at Kepler than any of the rest, who being of a free and piercing wit, and having the motion ascribed to the Earth, before him, hath for all that given his ear and consent to the Moon’s predominancy over the Water, and to occult properties and such like trifles’ (Dialogue IV, ed. Salusbury, Vol.1, p.422). Descartes, too, wanted a mechanistic explanation which implied low tide when, in fact, there is high tide. Both cases show that mechanicists who scorned ‘occult qualities’ were led to absurdities no less than those they rejected.Google Scholar
  147. 147.
    Aristotle, Meteor ologica, Bk.II, ch.8, 367al0.Google Scholar
  148. 148.
    Albertus Magnus, Meteororum, Bk.III, tr.2, ch.17: ‘Dico autem qualitatem moventem caliditatem solam, cujus exemplum in artificialibus sit … generatur vapor in vase, quern fortificatum retro erumpit per alterum foramen obstructum: et si irrumpit superius, longe projicit aquam sparsam in ignem, et impetu vaporis projicit … carbones et cineres calidos longe ab igne super circumstantia loca…’Google Scholar
  149. 149.
    Nicolas Lémery, Mém. Acad. Royale d. Sciences (1700), pp.131 ff.Google Scholar
  150. 150.
    ‘Extrait de quelques Lettres du Docteur Paccard, Sur les Causes … de la Direction oblique perpendiculaire, horizontale des Couches ornées et apparentes, etc., et sur la Manière d’imiter artificiellement les Mines’, in: Observations sur la Physique de Rozier et Mongez 18 (1781), pp.184–192.Google Scholar
  151. 151.
    ‘Extrait de quelques Lettres du Docteur Paccard, Sur les Causes … de la Direction oblique perpendiculaire, horizontale des Couches ornées et apparentes, etc., et sur la Manière d’imiter artificiellement les Mines’, in: Observations sur la Physique de Rozier et Mongez 18 (1781),, p. 186.Google Scholar
  152. 152.
    ‘Extrait de quelques Lettres du Docteur Paccard, Sur les Causes … de la Direction oblique perpendiculaire, horizontale des Couches ornées et apparentes, etc., et sur la Manière d’imiter artificiellement les Mines’, in: Observations sur la Physique de Rozier et Mongez 18 (1781),, pp. 187–189.Google Scholar
  153. 153.
    ‘Extrait de quelques Lettres du Docteur Paccard, Sur les Causes … de la Direction oblique perpendiculaire, horizontale des Couches ornées et apparentes, etc., et sur la Manière d’imiter artificiellement les Mines’, in: Observations sur la Physique de Rozier et Mongez 18 (1781),, p.\92. Google Scholar
  154. 154.
    Cf Bailey Willis, ‘The Mechanics of the Appalachian Structure’, in: U.S. Geol. Survey, 3d Annual Report, Washington 1893, pp.210–283.Google Scholar
  155. 155.
    A. Favre, Comptes Rendus Ac. Sei. 86 (1878), pp. 1092–1094.Google Scholar
  156. 156.
    A. Daubrée, études synthétiques de Géologie expérimentale. Paris 1879, ch.IV, p.288.Google Scholar
  157. 157.
    A. Daubrée, études synthétiques de Géologie expérimentale. Paris 1879, ch.IV, p.294.Google Scholar
  158. 158.
    L. de Launay, La Science géologique, ses Méthodes, ses Résultats, ses Problèmes, son Histoire. 2. ed., Paris 1913, pp.27–28.Google Scholar
  159. 159.
    James David Forbes (20 April 1809 — 11 December 1868) was professor of natural philosophy in Edinburgh 1833 — 1859; Principal of United College St Andrews 1859 — 1868. After 1840 his main interest shifted from physics to geology. He discovered the polarization and double refraction of radiant heat, and investigated the movements and structure of glaciers (Alps, Norway) and their causes.Google Scholar
  160. 160.
    J.D. Forbes, Travels through the Alps of Savoy. Edinburgh 1893, p.365.Google Scholar
  161. 161.
    J.D. Forbes, ‘Experiments on the Flow of Plastic Bodies and Observations on the Phenomena of Lava Streams’, in: Philosophical Transactions 1846; quoted from: J.D. Forbes, Occasional Papers, Edinburgh 1859,XI,p.77.Google Scholar
  162. 162.
    J.D. Forbes, ‘Experiments on the Flow of Plastic Bodies and Observations on the Phenomena of Lava Streams’, in: Philosophical Transactions 1846; quoted from: J.D. Forbes, Occasional Papers, Edinburgh 1859,XI, p.78.Google Scholar
  163. 163.
    J.D. Forbes, ‘Experiments on the Flow of Plastic Bodies and Observations on the Phenomena of Lava Streams’, in: Philosophical Transactions 1846; quoted from: J.D. Forbes, Occasional Papers, Edinburgh 1859,XI, p.82.Google Scholar
  164. 164.
    Etienne Geoffroy St Hilaire, in: Mém. Ac. d. Sei. Paris 12 (1832), p.80.Google Scholar
  165. 165.
    Etienne Geoffroy St Hilaire, in: Mém. Ac. d. Sei. Paris 12 (1832), p.82.Google Scholar
  166. 166.
    Qf Hooykaas, Natural Law and Divine Miracle. A Historical-Critical Study of the Principle of Uniformity in Geology, Biology and Theology. Leiden 4959, 21963, pp.117–118. Also R. Hooykaas, Continuité et Discontinuité en Géologie et Biologie, Paris 1970, pp.202–203.Google Scholar
  167. 167.
    Etienne Geoffroy St Hilaire, Mém. Musée Hist. Naturelle 17 (1828), p.213.Google Scholar
  168. 168.
    Charles Darwin, On the Origin of Species by Means of Natural Selection. London 1859, ch.3, p.61.Google Scholar
  169. 169.
    J.D. Forbes, ‘Theoretical Investigations, Intended to Illustrate the Phenomena of Polarisation’, in: Suppl. Encyclop. Britt. (1823), p.415.Google Scholar
  170. 170.
    ijQ form wkat Qauss caiieci a ‘construirbare Vorstellung’ of the invisible process of electrical action is the great desideratum in this part of science’ (Nature 11 (1874) (The Scientific Papers of James Clerk Maxwell. W.D. Niven ed. London 1890, Vol.11, p.419)).Google Scholar
  171. 171.
    Maxwell, ‘On Faraday’s Lines of Force’, in: Transact. Cambr. Phil SocAO (1855–56) pt I (Scientific Papers I, p. 155).Google Scholar
  172. 172.
    Maxwell, ‘On Faraday’s Lines of Force’, in: Transact. Cambr. Phil SocAO (1855–56) pt I (Scientific Papers I, p. 160.Google Scholar
  173. 173.
    Maxwell, ‘On Physical Lines of Force’, in: Phil. Mag. 21 (1861) and 23 (1862) (The theory of molecular vortices applied to electric currents); Scientific Papers I, pp.468 ff.Google Scholar
  174. 174.
    Maxwell himself called his conception ‘somewhat awkward’ (Scientific Papers II, p.486).Google Scholar
  175. 175.
  176. 176.
    William Thomson, ‘Steps towards a Kinetic Theory of Matter’, in: Brit. Assoc. Report 1884. Quoted from: W. Thomson, Popular Lectures and Addresses, Vol.1, London 1889, pp. 235–236.Google Scholar
  177. 177.
    Ibidem, p.240.Google Scholar
  178. 178.
    W. Thomson, Mathematical and Physical Papers, Vol.III, London 1890, pp.505–507.Google Scholar
  179. 179.
    Cf S.P. Thompson, The Life of William Thomson, Vol.11, London 1910, p.830. With Thomson the confidence in mechanical models competed with the acknowledgement that as yet no adequate models and theories had been formed. He was concerned that ‘the scales will fall from our eyes; that we shall look on things in a different way — when that which is now a difficulty will be the only common sense and intelligible way of looking at the subject’ (Thomson, Math, and Phys. Papers, Vol.III, p.511;cfp.465).Google Scholar
  180. 180.
    Thomson, ibidem, p.484.Google Scholar
  181. 181.
    O.J. Lodge, Modern Views on Electricity, London 1892, ch.X (Mechanical models of a magnetic field), p.202.Google Scholar
  182. 182.
    O.J. Lodge, Modern Views on Electricity, London 1892, ch.X (Mechanical models of a magnetic field), p.206.Google Scholar
  183. 183.
    O.J. Lodge, Modern Views on Electricity, London 1892, ch.X (Mechanical models of a magnetic field), p.59.Google Scholar
  184. 184.
    O.J. Lodge, Modern Views on Electricity, London 1892, ch.X (Mechanical models of a magnetic field), p.66.Google Scholar
  185. 185.
    O.J. Lodge, Modern Views on Electricity, London 1892, ch.X (Mechanical models of a magnetic field), p.67.Google Scholar
  186. 186.
    Ludwig Boltzmann, Vorlesungen über Maxwells Theorie der Elektrizität und des Lichtes. Tl.II, Leipzig 1893, p.13.Google Scholar
  187. 187.
    Ludwig Boltzmann, Vorlesungen über Maxwells Theorie der Elektrizität und des Lichtes. Tl.II, Leipzig 1893, p.44.Google Scholar
  188. 188.
    Ludwig Boltzmann, Vorlesungen über Maxwells Theorie der Elektrizität und des Lichtes. Tl.II, Leipzig 1893, p.35.Google Scholar
  189. 189.
    Ludwig Boltzmann, Vorlesungen über Maxwells Theorie der Elektrizität und des Lichtes. Tl.II, Leipzig 1893, p.35.Google Scholar
  190. 190.
    Ludwig Boltzmann, Vorlesungen über Maxwells Theorie der Elektrizität und des Lichtes. Tl.II, Leipzig 1893, p.44.Google Scholar
  191. 191.
    Ludwig Boltzmann, Vorlesungen über Maxwells Theorie der Elektrizität und des Lichtes. Tl.II, Leipzig 1893, p.45.Google Scholar
  192. 192.
    Ludwig Boltzmann, Vorlesungen über Maxwells Theorie der Elektrizität und des Lichtes. Tl.II, Leipzig 1893, pp.46–48.Google Scholar
  193. 193.
    Ludwig Boltzmann, Vorlesungen über Maxwells Theorie der Elektrizität und des Lichtes. Tl.II, Leipzig 1893, p.49.Google Scholar
  194. 194.
    Maxwell, Brit. Assoc. Reports, Liverpool 1870; Scientific Papers II, p.219.Google Scholar
  195. 195.
    Lodge, Modern Views on Electricity, p.67.Google Scholar
  196. 196.
    Maxwell, ‘On Faraday’s Lines of Force’ (Scientific Papers I, p. 156).Google Scholar
  197. 197.
    Maxwell, ‘Address Math. Phys. Section Brit. Assoc 1870’; Scientific Papers II, p.220.Google Scholar
  198. 198.
    James Jeans, The Mysterious Universe, Cambridge 1930, p. 141.Google Scholar
  199. 199.
    James Jeans, The Mysterious Universe, Cambridge 1930, p.142.Google Scholar
  200. 200.
    James Jeans, The Mysterious Universe, Cambridge 1930, p.146.Google Scholar
  201. 201.
    James Jeans, The Mysterious Universe, Cambridge 1930, p.148.Google Scholar
  202. 202.
    James Jeans, The Mysterious Universe, Cambridge 1930, p.149.Google Scholar
  203. 203.
    James Jeans, The Mysterious Universe, Cambridge 1930, p.127.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1999

Authors and Affiliations

  • R. Hooykaas
    • 1
  1. 1.UtrechtThe Netherlands

Personalised recommendations