Skip to main content

The Approximate Deconvolution Model Applied to LES of Turbulent Channel Flow

  • Conference paper
Direct and Large-Eddy Simulation III

Part of the book series: ERCOFTAC Series ((ERCO,volume 7))

Abstract

The approximate deconvolution model (ADM) is applied to LES of incompressible channel flow. With this approach an approximation to the unfiltered data is achieved by repeated filtering. This approximation can be used to compute the non-linear terms in the filtered NavierStokes equations directly without explicit subgrid scale terms. A priori tests show an excellent agreement with direct numerical simulation data. A posteriori tests are performed for incompressible channel flow at two different Reynolds numbers. Both simulations compare well with DNS data and show a significant improvement over classical subgrid scale models such as the standard or the dynamic Smagorinsky model. The computational overhead of the ADM is similar to that of the scale-similarity model and is considerably less than that of dynamic models or the velocity estimation model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams, N. A.: 1999, ‘Direct simulation of the turbulent boundary layer along a compression ramp at M = 3 and Ree = 1685’. Submitted.

    Google Scholar 

  • Cabot, W.: 1994, ‘Local dynamic subgrid-scale models in channel flow’. In: CTR Annual Research Briefs 1994.

    Google Scholar 

  • Domaradzki, J. A. and E. M. Saiki: 1997, ‘A subgrid-scale model based on the estimation of unresolved scales of turbulence’. Phys. Fluids 9, 2148–2164.

    Article  ADS  Google Scholar 

  • Domaradzki, J. A. and P. P. Yee: 1999, ‘Truncated Navier-Stokes dynamics for large eddy simulation of high Reynolds number turbulence’. Submitted.

    Google Scholar 

  • Germano, M., U. Piomelli, P. Moin, and W. H. Cabot: 1991, ‘A dynamic subgrid-scale eddy viscosity model’. Phys. Fluids A 3, 1760–1765.

    Google Scholar 

  • Geurts, B.: 1997, ‘Inverse modeling for large-eddy simulation’. Phys. Fluids 9, 3585–3587. Ghosal, S.: 1996, ‘An analysis of numerical errors in large-eddy simulations of turbulence’. J. Comput. Phys. 125, 187–206.

    Google Scholar 

  • Gilbert, N.: 1988, ‘Numerische Simulation der Transition von der laminaren in die turbulente Kanalströmung’. Technical Report DLR-Forschungsbericht 88–55, DLR, Göttingen, Germany. Doctoral Dissertation, University of Karlsruhe, in German.

    Google Scholar 

  • Gilbert, N. and L. Kleiser: 1991, ‘Turbulence model testing with the aid of direct numerical simulation results’. In: R. Friedrich and U. Schumann (eds.): Eighth Symposium on Turbulent Shear Flows. pp. 26–1.

    Google Scholar 

  • Kim, J., P. Moin, and R. D. Moser: 1987, ‘Turbulence statistics in fully developed channel flow at low Reynolds number’. J. Fluid Mech. 177, 133–166.

    Article  ADS  MATH  Google Scholar 

  • Lele, S. K.: 1992, ‘Compact finite difference schemes with spectral-like resolution’. J. Comp. Phys. 103, 16–42.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  • Leonard, A.: 1974, ‘Energy cascade in large eddy simulations of turbulent fluid flows’. Adv. Geophys. 18A, 237–248.

    Article  ADS  Google Scholar 

  • Lesieur, M. and O. Métais: 1996, ‘New trends in large-eddy simulations of turbulence’. Annu. Rev. Fluid. Mech. 28, 45–82.

    Article  ADS  Google Scholar 

  • Moser, R. D. J. Kim, and N. N. Mansour: 1999, –Direct numerical simulation of turbulent channel flow up to Re, = 590’. Phys. Fluids 11,943–945.

    Google Scholar 

  • Shah, K. B. and J. Ferziger: 1995, ‘A new non-eddy viscosity subgrid-scale model and its application to channel flow’. In: CTR Annual Research Briefs 1995. Stanford, California.

    Google Scholar 

  • Smagorinsky, J.: 1963, ‘General circulation experiments with the primitive equations’. Mon. Weath.Rev. 93, 99–164.

    Article  ADS  Google Scholar 

  • Stolz, S. and N. A. Adams: 1999, ‘An Approximate Deconvolution Procedure for Large-Eddy Simulation’. Phys. Fluids 11, 1699–1701.

    Article  ADS  MATH  Google Scholar 

  • Stolz, S., N. A. Adams, and L. Kleiser: 1999. Kleiser: 1999, ‘Analysis of sub-grid scales and sub-grid scale modeling for shock-boundary-layer interaction’. In: First International Symposium on Turbulence and Shear Flow Phenomena. Santa Barbara, California, Sept. 12–15. To appear.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Stolz, S., Adams, N.A., Kleiser, L. (1999). The Approximate Deconvolution Model Applied to LES of Turbulent Channel Flow. In: Voke, P.R., Sandham, N.D., Kleiser, L. (eds) Direct and Large-Eddy Simulation III. ERCOFTAC Series, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9285-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9285-7_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5327-5

  • Online ISBN: 978-94-015-9285-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics