Skip to main content

Pollutant Aging Studies in Soils

Relevancy of Bench Scale Assessments to Field Conditions

  • Chapter
Bioavailability of Organic Xenobiotics in the Environment

Part of the book series: NATO ASI Series ((ASEN2,volume 64))

  • 411 Accesses

Abstract

The bioavailability of pollutants is significantly influenced by its interactions with sedimentary organic matter. Natural organic matter (OM) is heterogeneous and exists as a multiphase macromolecular organic matrix formed from remnants of plant biobiopolymers degraded to varying degrees, dissolved and solid humic materials from plant degradation, refractory cross-linked organic matter derived from geologic processes, and deposited atmospheric combustion particles. Recent models have qualitatively described pollutant interactions with OM in soils but they often fail to adequately predict biological responses to aged contaminants. Our ability to predict pollutant behavior and bioavailability is limited by the lack of established techniques capable of probing the relevant molecular interactions of OM and our ignorance concerning the chemical composition of OM. Current models do not include chemical processes that transform plant materials to OM, nor do they include analytical methods for characterizing OM at the molecular level of detail. Thus, there is a gap in our knowledge about OM structure, maturation, and their subsequent effects on pollutant bioavailability and aging mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Weissenfels, W.D., Klewer, H.J., Langhoff. (1992). Adsorption of polycyclic aromatic hydrocarbons (PAHs) by soil particles: influence on biodegradability and biotoxicity. J. Microbiol. Biotechnol. 36, 689–696.

    Google Scholar 

  2. Pignatello, J.J. and Xing, B. (1996). Mechanisms of slow sorption of organic chemicals to natural particles. Environ. Sci. Technol. 30, 1–11.

    Article  CAS  Google Scholar 

  3. Hatzinger, P.B. and Alexander, M. (1995). Effect of aging of chemicals in soil on their biodegradability and extractability. Environ. Sci. Technol. 29, 537–545.

    Article  CAS  Google Scholar 

  4. Alexander, M. (1995). How toxic are toxic chemicals in soil? Environ. Sci. Technol. 29, 2713–2715.

    Google Scholar 

  5. Karickhoff, S.W. (1981). Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils. Chemosphere. 10, 833–846.

    Article  CAS  Google Scholar 

  6. Weber, W.J., Huang, W. (1996). A distributed reactivity model for sorption by soils and sediments. 4. lntraparticle heterogeneity and phase-distribution relationships under nonequilibrium conditions. Environ. Sci. Technol. 30, 881–888.

    Article  CAS  Google Scholar 

  7. McGroddy, S.E., Farrington, J.W., Gschwend, P.M. (1996). Comparison of the in situ and desorption sediment-water partitioning of polycyclic aromatic hydrocarbons and polychlorinated biphenyls. Environ. Sci. Technol. 30, 172–177.

    Article  CAS  Google Scholar 

  8. Huang, W. Weber, W.J. (1997). A distributed reactivity model for sorption by soils and sediments. 10. Relationships between desorption, hysteresis, and the chemical characteristics of organic domains. Environ. Sci. Technol. 31, 2562–2569.

    CAS  Google Scholar 

  9. Means, J.C., Wood, S.G., Hassett, J.J., Banwart, W.L., (1980). Sorption of polynuclear aromatic hydrocarbons by sediments and soils. Environ. Sci. Technol. 14, 1524–1528.

    Article  CAS  Google Scholar 

  10. Kan, A.T., Fu, G.F., Tomson, M.B. (1994). Adsorption/desorption hysteresis in organic pollutant and soil/sediment interaction. Environ. Sci. Technol. 28, 859–867.

    Article  CAS  Google Scholar 

  11. Kelsey,.W., Kottler, B.D., Alexander, M. (1997). Selective chemical extractants to predict bioavailability of soil-aged organic chemicals. Environ. Sci. Technol. 31, 214–217.

    Article  CAS  Google Scholar 

  12. Standley, L.J. (1997). Effect of sedimentary organic matter composition on the partitioning and bioavailability of dieldrin to the oligochaete Lumbricus variegatus. Environ. Sci. Technol. 31, 2577 2583.

    Google Scholar 

  13. Chiou, C.T., P.E. Porter, and Schmedding, D.W. (1983). Environ. Sci. Technol. 17, 227–231.

    Article  CAS  Google Scholar 

  14. Verstraete, W., and Devliegher, W. (1996). Formation of non-bioavailable organic residues in soil: Perspectives for site remediation. Biodegradation 7, 471–485.

    Article  CAS  Google Scholar 

  15. Guthrie, E.A. (1997). Microbially-mediated association of PAHs in soils. Unpublished Ph.D. dissertation, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

    Google Scholar 

  16. Landrum, P.F. and Faust, W.R. (1992). Variation in the bioavailability of polycyclic aromatic hydrocarbons to the amphipod diporeia (spp) with sediment aging. Environ. Sci. Technol. 11, 1197–1208.

    CAS  Google Scholar 

  17. Ghiorse, W.C., Herrick, J.B., Sandoli, R.L., and Madsen, E.L. (1995). Natural selection of PAH-degrading bacterial guilds at coal-tar disposal sites. Environ. Health Perspectives 103, 107–111.

    CAS  Google Scholar 

  18. Zepp, R.G. (1988). Environmental photoprocesses involving natural organic matter. in F.H. Frimmel and R.F. Christman (eds.), Humic substances and their role in the environment, John Wiley and Sons, New York, pp. 193–214.

    Google Scholar 

  19. Frimmel, F.H. (1994). Photochemical aspects related to humic substances. Environment International 20, 373–385.

    Article  CAS  Google Scholar 

  20. Maruya, K.A., Risebrough, R.W., and Home, A.J. (1996) Partitioning of polycyclic aromatic hydrocarbons between sediments from San Francisco Bay and their porewaters. Environ. Sci. Technol. 30, 2942–2947.

    Article  CAS  Google Scholar 

  21. Lovley, D.R., Coates, J.D., Blunt-Harris, E.L., Phillips, E.J.P., and Woodward, J.C. (1996). Humic substances as electron acceptors for microbial respiration. Nature 382, 445–863.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Guthrie, E.A. (1999). Pollutant Aging Studies in Soils. In: Baveye, P., Block, JC., Goncharuk, V.V. (eds) Bioavailability of Organic Xenobiotics in the Environment. NATO ASI Series, vol 64. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9235-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9235-2_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5311-4

  • Online ISBN: 978-94-015-9235-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics