Skip to main content

Steady shear viscous properties

  • Chapter

Abstract

There is extensive literature on the rheology of filled polymer systems [1–75] including reviews [41,42,49] and chapters in a number of books [76–85] . The bulk of the literature deals with rheology of systems in the filler loading range of 20–40% by volume. In the present context, this range will be considered as the low filler loading range and will be referred to thus whenever necessary. Aspects relating to this loading level have been effectively reviewed by Utracki and Fisa [41]. The filler loading range between 40 to about 60% by volume will be referred to here as the high filler loading range. A review of the rheology of highly filled polymer melt systems is also available [82]. The enhanced interest in the rheology of highly filled polymer systems is the intended use of the polymers as binders during ceramic processing [48,66–70,73–75] and for the preparation of functional composites [60–63].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Park, C.S., Lee, K.J., Kim, D.H. and Park, H.J. (1977) Rheological characterization of glass fiber filled poly(butylene terephthalate) resin, Paper 10-B presented at the thirteenth international meeting of the Polymer Processing Society (June 10–13).

    Google Scholar 

  2. Chapman, F.M. and Lee, T.S. (1970) Effect of talc filler on the melt rheology of polypropylene, SPE Journal, 26, 37–40.

    CAS  Google Scholar 

  3. Mills, N.J. (1971) The rheology of filled polymers, J. Appl. Polym. Sci., 15, 2791–805.

    CAS  Google Scholar 

  4. Nazem, F. and Hill, C.T. (1974) Elongational and shear viscosities of beadfilled thermoplastic, Trans. Soc. Rheol., 18, 87–101.

    CAS  Google Scholar 

  5. Han, C.D. (1974) Rheological properties of calcium carbonate-filled polypropylene melts., J. Appl. Polym. Sci., 18, 821–9.

    CAS  Google Scholar 

  6. White, J.L. and Crowder, J.W. (1974) The influence of carbon black on the extrusion characteristics and rheological properties of elastomers: polybutadiene and butadiene-styrene copolymer, J. Appl. Polym. Sci., 18, 1013–38.

    CAS  Google Scholar 

  7. Minagawa, N. and White, J.L. (1976) The influence of titanium dioxide on the rheological extrusion properties of polymer melts, J. Appl. Polym. Sci., 20, 501–23.

    CAS  Google Scholar 

  8. Faulkner, D.L. and Schmidt, L.R. (1977) Glass bead-filled polypropylene Part I: Rheological and mechanical properties, Polym. Engg Sci., 17, 657–64.

    CAS  Google Scholar 

  9. Boira, M.S. and Chaffey, C.E. (1977) Effects of coupling agents on the mechanical and rheological properties of mica-reinforced polypropylene, Polym. Engg Sci., 17, 715–18.

    Google Scholar 

  10. Bigg, D.M. (1977) Rheology and wire coating of high atomic number metal low density polyethylene composites, Polym. Engg Sci., 17, 745–50.

    Google Scholar 

  11. Kataoka, T., Kitano, T., Sasahara, M. and Nishijima, K. (1978) Viscosity of particle filled polymer melts, Rheol. Acta, 17, 149–55.

    CAS  Google Scholar 

  12. Kataoka, T., Kitano, T. and Nishimura, T. (1978) Utility of parallel-plate plastometer for rheological study of filled polymer melts, Rheol. Acta, 17, 626–31.

    CAS  Google Scholar 

  13. Copeland, J.R. and Rush, O.W. (1978) Wollastonite: short fiber filler/ reinforcement, Plastic Compounding, 1, 26–36 (Nov./Dec.).

    CAS  Google Scholar 

  14. Chan, Y., White, J.L. and Oyanagi, Y. (1978) Influence of glass fibers on the extrusion and injection molding characteristics of polyethylene and polystyrene melts, Polym. Engg Sci., 18, 268–72;

    CAS  Google Scholar 

  15. Chan, Y., White, J.L. and Oyanagi, Y. (1978) A fundamental study of the rheological properties of glass fiber-reinforced polyethylene and polystyrene melts, J. Rheol., 22, 507–24.

    CAS  Google Scholar 

  16. Han, C.D., Sandford, C. and Yoo, H.J. (1978) Effects of titanate coupling agents on the rheological and mechanical properties of filled polyolefins, Polym. Engg Sci., 18, 849–54.

    CAS  Google Scholar 

  17. Menges, G., Geisbusch, P. and Zingel, U. (1979) Kunststoffe, 7, 485.

    Google Scholar 

  18. Arina, M., Honkanen, A. and Tammela, V. (1979) Mineral fillers in low density polyethylene films, Polym. Engg Sci., 19, 30–9.

    CAS  Google Scholar 

  19. Monte, S.J. and Sugerman, G. (1979) A new generation of age and waterresistant reinforced plastics, Polym. Plastics Tech. Engg, 12, 115–35.

    Google Scholar 

  20. Lobe, V.M. and White, J.L. (1979) An experimental study of the influence of carbon black on the rheological properties of a polystyrene melt, Polym. Engg Sci., 19, 617–24.

    CAS  Google Scholar 

  21. Wu, S. (1979) Order-disorder transitions in the extrusion of fiber-filled poly(ethylene terephthalate) and blends, Polym. Engg Sci., 19, 638–50.

    CAS  Google Scholar 

  22. Kataoka, T., Kitano, T., Oyanagi, Y. and Sasahara, M. (1979) Viscous properties of calcium carbonate filled polymer melts, Rheol. Acta, 18, 635–9.

    CAS  Google Scholar 

  23. Kitano, T., Kataoka, T., Nishimura, T. and Sakai, T. (1980) Relative viscosities of polymer melts filled with inorganic fillers, Rheol. Acta, 19, 764–9.

    CAS  Google Scholar 

  24. Kitano, T., Nishimura, T., Kataoka, T. and Sakai, T. (1980) Correlation of dynamic and steady flow viscosities of filled polymer systems, Rheol. Acta, 19, 671–3.

    CAS  Google Scholar 

  25. Crowson, R.J., Folkes, M.J. and Bright, P.F. (1980) Rheology of short glass fiber-reinforced thermoplastics and its applications to injection molding I. Fiber motion and viscosity measurement, Polym. Engg Sci., 20, 925–33.

    CAS  Google Scholar 

  26. Crowson, R.J. and Folkes, M.J. (1980) Rheology of short glass fiber-reinforced thermoplastics and its application to injection molding II. The effect of material parameters, Polym. Engg Sci., 20, 934–40.

    CAS  Google Scholar 

  27. Goel, D.C. (1980) Effect of polymeric additives on the rheological properties of talc-filled polypropylene, Polym. Engg Sci., 20, 198–201.

    CAS  Google Scholar 

  28. Tanaka, H. and White, J.L. (1980) Experimental investigations of shear and elongational flow properties of polystyrene melts reinforced with calcium carbonate, titanium dioxide and carbon black, Polym. Engg Sci., 20, 949–56.

    CAS  Google Scholar 

  29. Czarnecki, I. and White, J.L. (1980) Shear flow rheological properties, fiber damage and mastication characteristics of aramid, glass and cellulose-fiber reinforced polystyrene melts, J. Appl. Polym. Sci., 25, 1217–44.

    CAS  Google Scholar 

  30. White, J.L., Czarnecki, I. and Tanaka, H. (1980) Experimental studies of the influence of particle and fiber reinforcement on the rheological properties of polymer melts, Rubber Chem. Tech., 53, 823–35.

    CAS  Google Scholar 

  31. Hancock, M., Tremayne, P. and Rosevear, J. (1980) Fillers in polypropylene II. J. Polym. Sci. Polym. Chem. Ed., 18, 3211–17.

    Google Scholar 

  32. Knutsson, B.A., White, J.L. and Abbas, K.A. (1981) Rheological and extrusion characteristics of glass-fiber reinforced polycarbonate, J. Appl. Polym. Sci., 26, 2347–62.

    CAS  Google Scholar 

  33. Cope, D.E. and Linnert, E. (1980) The lowdown on loading down resins using hydrophobic encapsulation, Plastic Engg, 37–9 (June).

    Google Scholar 

  34. Kitano, T., Kataoka, T. and Shirata, T. (1981) An empirical equation of the relative viscosity of polymer melts filled with various inorganic fillers, Rheol. Acta, 20, 207–9.

    CAS  Google Scholar 

  35. Han, C.D., Van der Weghe, T., Shete, P. and Haw, J.R. (1981) Effect of coupling agents on the rheological properties, processing and mechanical properties of filled polypropylene, Polym. Engg Sci., 21, 196–204.

    CAS  Google Scholar 

  36. Stamhuis, J.F. and Loppe, J.P.A. (1982) Rheological determination of polymer-filler affinity, Rheol. Acta, 21, 103–5.

    CAS  Google Scholar 

  37. Sharma, Y.N., Patel, R.D., Dhimmar, I.H. and Bhardwaj, I.S. (1982) Studies of the effect of titanate coupling agent on the performance of polypropylenecalcium carbonate composite, J. Appl. Polym. Sci., 27, 97–104.

    CAS  Google Scholar 

  38. Nakatsuka, T., Kawasaki, H., Itadani, K. and Yamashita, S. (1982) Phosphate coupling agents for calcium carbonate filler, J. Appl. Polym. Sci., 27, 259–69.

    CAS  Google Scholar 

  39. Lee, W.M., Abe, D.A., Chipalkatti, M.H. and Liaw, T.F. (1982) Rheological properties of particulate-filled linear low density polyethylenes, Proc. Ann. Conf. Reinf. Plast. Compos. Inst. Soc., Plast. Ind., 37 (12D), 7.

    Google Scholar 

  40. Juskey, V.P. and Chaffey, C.E. (1982) Rheology and tensile properties of polypropylene reinforced with glycerol-treated mica, Can. J. Chem. Engg, 60, 334–41.

    CAS  Google Scholar 

  41. Hinkelmann, B. (1982) Zur analytischen beschreibung des fullstoffein-flusses auf das fliessverhalten von kunststoffschmelzen, Rheol. Acta, 21, 491–3.

    Google Scholar 

  42. Utracki, L.A. and Fisa, B. (1982) Rheology of fiber or flake-filled plastics, Polym. Composites, 3, 193–211.

    CAS  Google Scholar 

  43. White, J.L. (1982) Rheological behavior of highly filled/reinforced polymer melts, Plastics Compounding, 47–64 (Jan./Feb.).

    Google Scholar 

  44. Bigg, D.M. (1982) Rheological analysis of highly loaded polymeric cornposites filled with non-agglomerating spherical filler particles, Polym. Engg Sci., 22, 512–18.

    CAS  Google Scholar 

  45. Bigg, D.M. (1983) Rheological behavior of highly filled polymer melts, Polym. Engg Sci., 23, 206–10.

    CAS  Google Scholar 

  46. Althouse, L.M., Bigg, D.M. and Wong, W.M. (1983) Evaluating the effectiveness of filler surface treatments, Plastics Compounding (March/April).

    Google Scholar 

  47. Lem, K.W. and Han, C.D. (1983) Rheological behavior of concentrated suspensions of particulates in unsaturated polyester resin, J. Rheol., 27, 263–88.

    CAS  Google Scholar 

  48. Daley, L.R. and Rodriguez, F. (1983) Flow properties of ethylene-propylene terpolymer filled with silica modified by silane coupling agents, Ind. Eng. Chem. Prod. Res. Dev., 22, 695–8.

    CAS  Google Scholar 

  49. Mutsuddy, B.C. (1983) Influence of powder characteristics on the rheology of ceramic injection molding mixtures, Proc. Brit. Ceram. Soc., 33, 117–37.

    CAS  Google Scholar 

  50. Chaffey, C.E. (1983) Reinforced thermoplastics: through flow to use, Ann. Rev. Mater. Sci., 13, 43–65.

    CAS  Google Scholar 

  51. Shenoy, A.V., Saini, D.R. and Nadkarni, V.M. (1983) Rheograms of filled polymer melts from melt-flow index, Polym. Composites, 4, 53–63.

    CAS  Google Scholar 

  52. Shenoy, A.V. and Saini, D.R. (1983) Interpretation of flow data for multicomponent polymeric systems, Colloid Polym. Sci., 261, 846–54.

    CAS  Google Scholar 

  53. Suetsugu, Y. and White, J.L. (1983) The influence of particle size and surface coating of calcium carbonate on the rheological properties of its suspension in molten polystyrene, J. Appl. Polym. Sci., 28, 1481–1501.

    CAS  Google Scholar 

  54. Luo, H.L., Han, C.D. and Mijovic, J. (1983) Effects of coupling agents in the rheological behavior and physical mechanical properties of filled nylon 6, J. Appl. Polym. Sci., 28, 3387–98.

    CAS  Google Scholar 

  55. Bigg, D.M. (1984) Complex rheology of highly filled thermoplastic melts, Proc. IX Intl. Congress on Rheology in Mexico, Adv. in Rheology, 3, 429–37.

    Google Scholar 

  56. Kitano, T., Kataoka, T. and Nagatsuka, Y. (1984) Shear flow rheological properties of vinylon and glass-fiber reinforced polyethylene melts, Rheol. Acta, 23, 20–30.

    CAS  Google Scholar 

  57. Kitano, T., Kataoka, T. and Nagatsuka, Y. (1984) Dynamic flow properties of vinylon fiber and glass fiber reinforced polyethylene melts, Rheol. Acta, 23, 408–16.

    CAS  Google Scholar 

  58. Suetsugu, Y. and White, J.L. (1984) A theory of thixotropic plastic viscoelastic fluids with a time-dependent yield surface and its comparison to transient and steady state experiments on small particle filled polymer melts, J. Non-Newtonian Fluid Mech., 14, 121–40.

    CAS  Google Scholar 

  59. Hinkelmann, B. and Mennig, G. (1985) On the rheological behavior of filled polymer melts, Chem. Engg Comm., 36, 211–21.

    CAS  Google Scholar 

  60. Bretas, R.E.S. and Powell, R.L. (1985) Dynamic and transient rheological properties of glass-filled polymer melts, Rheol. Acta, 24, 69–74.

    CAS  Google Scholar 

  61. Saini, D.R., Shenoy, A.V. and Nadkarni, V.M. (1985) Effect of surface treatment on the rheological and mechanical properties of ferrite-filled polymeric systems, Polym. Engg Sci., 25, 807–11.

    CAS  Google Scholar 

  62. Saini, D.R. and Shenoy, A.V. (1986) Viscoelastic properties of highly loaded ferrite-filled polymeric systems, Polym. Engg Sci., 26, 441–5.

    CAS  Google Scholar 

  63. Shenoy, A.V. and Saini, D.R. (1986) Quantitative estimation of matrix filler interactions in ferrite-filled styrene-isoprene-styrene block copolymer systems, Polym. Composites, 7, 96–100.

    CAS  Google Scholar 

  64. Saini, D.R., Shenoy, A.V. and Nadkarni, V.M. (1986) Melt rheology of highly loaded ferrite-filled polymer composites, Polym. Composites, 7, 193–200.

    CAS  Google Scholar 

  65. Shenoy, A.V. and Saini, D.R. (1986) Wollastonite reinforced polypropylene composites: Dynamic and steady state melt flow behavior, J. Reinf. Plastics Comp., 5, 62–73.

    CAS  Google Scholar 

  66. Mutel, A.T. and Kamal, M.R. (1986) Characterization of the rheological behavior of fiber-filled polypropylene melts under steady and oscillatory shear using cone-and-plate and rotational parallel plate geometry, Polym. Composites, 7, 283–94.

    CAS  Google Scholar 

  67. Edirisinghe, M.J. and Evans, J.R.G. (1987) Rheology of ceramic injection molding formulations, Br. Ceram. Trans. J., 86, 18–22.

    CAS  Google Scholar 

  68. Sacks, M.D., Khadilkar, C.S., Scheiffele, G.W., Shenoy, A.V., Dow, J.H. and Sheu, R.S. (1987) Dispersion and rheology in ceramic processing, Advances in Ceramics, 24, 495–515.

    Google Scholar 

  69. Dow, J.H., Sacks, M.D. and Shenoy, A.V. (1988) Dispersion of ceramic particles in polymer melts, Ceram. Trans. (Ceram. Powder Sci. IIA), 1, 380–8.

    CAS  Google Scholar 

  70. Hunt, K.N., Evans, J.R.G. and Woodthorpe, J. (1988) The influence of mixing route on the properties of ceramic injection moulding blends, Br. Ceram. Trans. J., 17–21.

    Google Scholar 

  71. Takahashi, M., Suzuki, S., Nitanda, H. and Arai, E. (1988) Mixing and flow characteristic in the alumina / thermoplastic resin system, J. Am. Ceram. Soc., 17, 1093–9.

    Google Scholar 

  72. Poslinski, A.J., Ryan, M.E., Gupta, R.K., Seshadri, S.G. and Frechette, F.J. (1988) Rheological behavior of filled polymer systems I. Yield stress and shear-thinning effects, J. Rheol., 32, 703–35.

    CAS  Google Scholar 

  73. Poslinski, A.J., Ryan, M.E., Gupta, R.K., Seshadri, S.G. and Frechette, F.J. (1988) Rheological behavior of filled polymeric systems II. The effect of a bimodel size distribution of particulates, J. Rheol., 32, 751–71.

    CAS  Google Scholar 

  74. Ishigure, Y., Nagaya, K., Mitsumatsu, F., Otabe, S., Hayashi, K., Sobajima, A. and Murase, I. (1989) Relationship between the flow characteristics of highly filled alumina or zirconia-organic binder and the properties of sintered products in injection molding processing, Rep. Gifu Pref. Ind. Res. Tech. Center, 21, 51–70.

    Google Scholar 

  75. Dow, J.H., Sacks, M.D. and Shenoy, A.V. (1990) Dispersion of alumina particles in polyethylene melts, Ceram. Trans. (Ceram. Powder Sci. III), 12, 431–42.

    CAS  Google Scholar 

  76. Edirisinghe, M.J., Shaw, H.M. and Tomkins, K.L. (1992) Flow behavior of ceramic injection moulding suspensions, Ceramics Int., 18, 193–200.

    CAS  Google Scholar 

  77. Nielsen, L.E. (1974) Mechanical Properties of Polymers and Composites, Marcel Dekker, New York, Vol. 2, Ch. 7, 379–86.

    Google Scholar 

  78. Han, C.D. (1976) Rheology in Polymer Processing, Academic Press, New York, 7, 182–8.

    Google Scholar 

  79. Nielsen, L.E. (1977) Polymer Rheology, Marcel Dekker, New York, Ch. 9, 133–57.

    Google Scholar 

  80. Paul, D.R. and Newman, S. (1978) Polymer Blends, Academic Press, New York, 1, Ch. 7, 295–352.

    Google Scholar 

  81. Vinogradov, G.V. and Malkin, A.Y. (1980) Rheology of Polymers, Mir Publishers, Moscow 380–402.

    Google Scholar 

  82. Han, C.D. (1981) Multiphase Flow in Polymer Processing, Academic Press, New York.

    Google Scholar 

  83. Shenoy, A.V. (1988) Rheology of highly filled polymer melt systems, in Encyclopedia of Fluid Mechanics (ed. N.P. Cheremisinoff), Gulf Publishing, Houston, TX, 7, 667–701.

    Google Scholar 

  84. Yanovsky, Yu.G. and Zaikov, G.E. (1990) Rheological properties of filled polymers, in Encyclopedia of Fluid Mechanics (ed. N.P. Cheremisinoff), Gulf Publishing, Houston, TX, 9, 243–76.

    Google Scholar 

  85. Carreau, P.J. (1992) Rheology of filled polymeric systems, in Transport Processes in Bubbles, Drops and Particles (eds R.P. Chhabra and D. Dekee), Hemisphere Publishing, New York, 165–90.

    Google Scholar 

  86. Advani, S.G. (ed.) (1994) Flow and Rheology in Polymer Composites Manufacturing, Elsevier Science B.V.

    Google Scholar 

  87. Tanaka, H. and White, J.L. (1980) A cell model theory of the shear viscosity of a concentrated suspension of interacting spheres in a non-Newtonian fluid, J. Non-Newtonian Fluid Mech., 7, 333–43.

    CAS  Google Scholar 

  88. Einstein, A. (1906) Eine neue bestimmung der moleculdimension, Ann. Physik, 19, 289.

    CAS  Google Scholar 

  89. Frankel, N.A. and Acrivos, A. (1967) On the viscosity of a concentrated suspension of solid spheres, Chem. Engg Sci., 22, 847–53.

    Google Scholar 

  90. Hamaker, C. (1937) London-van der Waals attraction between spherical particles, Physics, 4, 1058–72.

    CAS  Google Scholar 

  91. Derjaguin, B. (1940) On the repulsive forces between charged colloid particles and on the theory of slow coagulation and stability of lyophobe sols, Trans. Faraday Soc., 36, 203–15.

    Google Scholar 

  92. Herschel, W.H. and Bulkley, R. (1926) Konsistenzmessungen von gummibenzollosungen, Kolloid-Z., 39, 291–300.

    Google Scholar 

  93. Jarzebski, G.J. (1981) On the effective viscosity of pseudoplastic suspensions, Rheol. Acta, 20, 280–7.

    CAS  Google Scholar 

  94. Rajaiah, J. (1990) Rheology and thermal conductivity of concentrated suspensions, PhD. dissertation, Chemical Engg (SUNY, Buffalo).

    Google Scholar 

  95. Gurland, J. (1966) An estimate of contact and continuity of dispersion in opaque samples, Trans. Met. Soc., AIME, 236, 642–6.

    CAS  Google Scholar 

  96. Gupta, R.K. (1994) Particulate suspensions, in Flow and Rheology in Polymer Composites Manufacturing (ed. S.G. Advani), Elsevier, Amsterdam.

    Google Scholar 

  97. Eyring, H. (1936) Viscosity, plasticity and diffusion as examples of absolute reaction rates, J. Chem. Phys., 4, 283–91.

    CAS  Google Scholar 

  98. Maron, S.H. and Pierce, P.E. (1956) Application of Ree-Eyring generalized flow theory to suspensions of spherical particles, J. Colloid Sci., 11, 80.

    CAS  Google Scholar 

  99. Chong, J.S., Christiansen, E.B. and Baer, A.D. (1971) Rheology of concentrated suspensions, J. Appl. Polym. Sci., 15, 2007–21.

    CAS  Google Scholar 

  100. Shenoy, A.V. and Saini, D.R. (1996) Thermoplastic Melt Rheology and Processing, Marcel Dekker, New York.

    Google Scholar 

  101. Doolittle, A.K. (1951) Studies in Newtonian flow. II. The dependence of viscosity of liquid on free space, J. Appl. Phys., 22, 1471–5;

    CAS  Google Scholar 

  102. Doolittle, A.K. (1952), III. The dependence of the viscosity of liquids on molecular weight and free space (in homogeneous series), J. Appl. Phys., 23, 236–9.

    CAS  Google Scholar 

  103. Fujita, H. and Kishimoto, J. (1961) Interpretation of viscosity data for concentrated polymer solutions, J. Chem. Phys., 34, 393–8.

    CAS  Google Scholar 

  104. Matijevic, E. (1985) Production of monodispersed colloidal particle, Annu. Rev. Mater. Sci., 15, 483–516.

    CAS  Google Scholar 

  105. Stober, W., Fink, A. and Bohn, E. (1968) Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interf. Sci., 26, 62–9.

    Google Scholar 

  106. Tan, C.G., Bowen, B.D. and Epstein, N. (1987) Production of monodisperse silica spheres: Effect of temperature, J. Colloid Interf. Sci., 118, 290–3.

    CAS  Google Scholar 

  107. Ahu, C.W., Zhao, G.Y., Revankar, V.V.S. and Hlavacek, V. (1992) Design and development of the d.c. plasma reactor for the synthesis of ultrafine powders, J. Mat. Sci., 27, 2211–17.

    Google Scholar 

  108. Krieger, I.M. (1972) Rheology of monodisperse lattices, Adv. Coll. Interface Sci., 3, 111–36.

    CAS  Google Scholar 

  109. Ward, S.G. and Whitmore, R.L. (1950) Studies of the viscosity and sedimentation of suspensions. Part I: The viscosity of suspensions of spherical particles, Br. J. Appl. Phys., 1, 286.

    Google Scholar 

  110. Eveson, G.F. (1959) Rheology of Dispersed Systems (ed. C.C. Mill), Pergamon Press, New York.

    Google Scholar 

  111. Lee, D.I. (1969) The viscosity of concentrated suspensions, Trans. Soc. Rheol., 13, 273–88.

    CAS  Google Scholar 

  112. Groto, H. and Kuno, H. (1982) Flow of suspensions containing particles of two different sizes through a capillary tube, J. Rheol., 26, 387–98;

    Google Scholar 

  113. Groto, H. and Kuno, H. (1984) Flow of suspensions containing particles of two different sizes through a capillary tube. II. Effect of the particle size ratio, 28, 197–205.

    Google Scholar 

  114. Mokube, V. (1981) An experimental study of the rheology of non-settling suspensions, MS thesis, Department of Chemical Engineering, State University of New York at Buffalo, Amherst, New York, 1981.

    Google Scholar 

  115. Gillespie, T. (1983) The effect of aggregation and particle size distribution on the viscosity of Newtonian suspensions, J. Coll. Inter. Sci., 94, 166–73.

    CAS  Google Scholar 

  116. Farris, R.J. (1968) Prediction of the viscosity of multimodal suspensions from unimodal viscosity data, Trans. Soc. Rheol., 12, 281–301.

    Google Scholar 

  117. Henderson, C.B., Scheffe, R.S. and McHale, E.T. (1982) Manuscript prepared for Cleveland AIChE meeting (August).

    Google Scholar 

  118. Sweeny, K.H. (1959) Manuscript presented at the Symposium on High Energy Fuel, 135th National Meeting, American Chemical Society, Boston, Ma.

    Google Scholar 

  119. Mangels, J.A. (1978) Development of injection moulded reaction bonded silicon nitride, in Ceramics for High Performance Application - II (eds J.J. Burke, E.N. Lenoe and R.N. Katz), Brook Hill Publishing, Chestnut Hill, Massachusetts, USA, 113–30.

    Google Scholar 

  120. Mangels, J.A. and Williams, R.M. (1983) Injection molding ceramics to high green densities, Am. Cer. Soc. Bull., 62, 601–6.

    CAS  Google Scholar 

  121. Barringer, E.A. and Bowen, H.K. (1982) Formation packing and sintering of monodisperse TiO2 powders, J. Am. Ceram. Soc., 65, C199–C201.

    CAS  Google Scholar 

  122. Mangels, J.A. and Trela, W. (1984) Ceramic components by injection molding, Adv. in Ceramics, 9, 234–8.

    Google Scholar 

  123. Adams, E.F. (1971) Slip cast ceramics, in High Temperature Oxides, Part IV (ed. M. Allen), Academic Press, New York, 45.

    Google Scholar 

  124. Westman, A.E.R. and Hugill, H.R. (1930) Packing of particles, J. Am. Ceram. Soc., 13, 767–9.

    CAS  Google Scholar 

  125. Lewis, H.D. and Goldman, A. (1966) Theorems for calculation of weight ratios to produce maximum packing density of powder mixtures, J. Am. Ceram. Soc., 323–7.

    Google Scholar 

  126. Ayer, J.E. and Soppet, F.E. (1965) Vibratory compaction: I, Compaction of spherical particles, J. Am. Ceram. Soc., 180–83; (1966) II, Compaction of angular shapes, J. Am. Ceram Soc., 49, 207–10.

    CAS  Google Scholar 

  127. Willermet, P.A., Pett, R.A. and Whalen, T.J. (1978) Development and processing of injection-moldable reaction — Sintered Sic compositions, Am. Ceram. Soc. Bull., 57, 744–7.

    CAS  Google Scholar 

  128. Edirisinghe, M.J. and Evans, J.R.G. (1986) Review: Fabrication of engineering ceramics by injection moulding, I. Materials selection, Int. J. High Tech. Ceramics, 2, 1–31;

    CAS  Google Scholar 

  129. Edirisinghe, M.J. and Evans, J.R.G. (1986) II. Techniques, lnt. J. High Tech. Ceramics, 2, 249–78.

    CAS  Google Scholar 

  130. Bhattacharya, S.K. (ed.) (1986) Metal-filled Polymers: Properties and Applications, Marcel Dekker, New York and Basel.

    Google Scholar 

  131. German, R.M. (1990) Powder Injection Molding, Metal Powder Industries Federation, NJ.

    Google Scholar 

  132. Milewski, J.V. (1978) The combined packing of rods and spheres in reinforcing plastics, Ind. Eng. Chem. Prod. Res. Dev., 17, 363–6.

    CAS  Google Scholar 

  133. Gupta, R.K. and Seshadri, S.G. (1986) Maximum loading levels in filled liquid systems, J. Rheol., 30, 503–8.

    CAS  Google Scholar 

  134. Ouchiyama, N. and Tanaka, T. (1980) Ind. Eng. Chem. Fund., 19, 338; (1981) 20, 66; (1984) 23, 490.

    CAS  Google Scholar 

  135. Rumpf, H. and Schubert, H. (1978) Adhesion forces in agglomeration processes, in Ceramic Processing before Firing (eds G.Y. Onoda and L.L. Hench), Wiley, New York, 357–76.

    Google Scholar 

  136. Parish, M.V., Garcia, R.R. and Bowen, H.K. (1985) Dispersion of oxide powders in organic liquids, J. Mater. Sci., 20, 996–1008.

    CAS  Google Scholar 

  137. Plueddemann, E.P. (1982) Silane Coupling Agents, Plenum Press, New York and London.

    Google Scholar 

  138. Monte, S.J. and Sugerman, G. (1985) Ken-React Reference Manual Titanate and Zirconate Coupling Agents, Kenrich Petrochemicals, Bayonne, NJ 07002–0032.

    Google Scholar 

  139. Cohen, L.B. (1986) The chemistry and reactivity of zircoaluminate coupling agents for filled and reinforced plastics, SPI RP/C, Atlanta, GA, January 27–31.

    Google Scholar 

  140. Johnson, R.O. and Teutsch, E.O. (1983) Thermoplastic aromatic polyimide composites, Polym. Composites, 4, 162–6.

    CAS  Google Scholar 

  141. Lakdawala, K. and Salovey, R. (1987) Rheology of polymers containing carbon black, Polym. Engg Sci., 27, 1035.

    CAS  Google Scholar 

  142. Bartenev, G.M. and Zakharenko, N.V. (1962) Kolloid Z., 24,101.

    Google Scholar 

  143. Droste, D.H. and Dibenedetto, A.T. (1969) The glass transition temperature of filled polymers and its effect on their physical properties, J. Appl. Polym. Sci., 13, 2149–68.

    CAS  Google Scholar 

  144. Peyser, P. (1978) The effect of fillers on polymer properties, Polym.-Plast. Technol. Eng., 10, 117–29.

    CAS  Google Scholar 

  145. Lipatov, Yu.S. and Sergeeva, L.M. (1974) Adsorption of Polymers, Wiley, New York, Ch. 7.

    Google Scholar 

  146. Kolarik, J., Janacek, J. and Nicolais, L. (1976) Dynamic mechanical behavior of poly (2-hydroxyethyl methacrylate) — glass beads composites, J. Appl. Polym. Sci., 20, 841–51.

    CAS  Google Scholar 

  147. Dufresne, A. (1989) Properties mecaniques, electriques et rheologiques de materiaux thermoplastiques renforces de noir de carbone, MASc thesis, Ecole Polytechnique of Montreal.

    Google Scholar 

  148. Shenoy, A.V., Chattopadhyay, S. and Nadkarni, V.M. (1983) From melt flow-index to rheogram, Rheol. Acta, 22, 90–101.

    CAS  Google Scholar 

  149. Shenoy, A.V., Saini, D.R. and Nadkarni, V.M. (1983) Rheograms for engineering thermoplastics from melt flow index, Rheol. Acta, 22, 209–22.

    CAS  Google Scholar 

  150. Shenoy, A.V., Saini, D.R. and Nadkarni, V.M. (1983) Rheology of nylon 6 containing metal halides, J. Mat. Sci., 18, 2149–55.

    CAS  Google Scholar 

  151. Shenoy, A.V., Saini, D.R. and Nadkarni, V.M. (1982) Rheograms for cellulosic polymers from the melt flow index, J. Appl. Polym. Sci., 27, 4399–408.

    CAS  Google Scholar 

  152. Saini, D.R. and Shenoy, A.V. (1983) Viscoelastic properties of linear low density polyethylene melts, Eur. Polym. J., 19, 811–16.

    CAS  Google Scholar 

  153. Saini, D.R. and Shenoy, A.V. (1985) Melt rheology of some speciality polymers, J. Elastomers Plastics, 17, 189–217.

    CAS  Google Scholar 

  154. Saini, D.R. and Shenoy, A.V. (1986) Deformation behavior of poly(vinylidene fluoride), Ind. Engg Chem. Prod. Res. Dev., 25, 277–82.

    CAS  Google Scholar 

  155. Shenoy, A.V. and Saini, D.R. (1985) Copolymer melt rheograms from melt flow index, British Polym. J., 17, 314–20.

    CAS  Google Scholar 

  156. Shenoy, A.V. and Saini, D.R. (1986) Melt flow behavior of liquid crystalline polymer, Mol. Cryst. Liq. Cryst., 135, 343–54.

    CAS  Google Scholar 

  157. Shenoy, A.V., Saini, D.R. and Nadkarni, V.M. (1983) Estimation of the melt rheology of polymer waste from melt flow index, Polymer, 24, 722–8.

    CAS  Google Scholar 

  158. Shenoy, A.V., Saini, D.R. and Nadkarni, V.M. (1984) Melt rheology of polymer blends from melt flow index, Int. J. Polymeric Material, 10, 213–35.

    CAS  Google Scholar 

  159. Shenoy, A.V., Saini, D.R. and Nadkarni, V.M. (1983) Rheology of poly(vinyl chloride) formulations from melt flow index measurements, J. Vinyl Tech., 5, 192–7.

    CAS  Google Scholar 

  160. Rideal, G.R. and Padget, J.C. (1976) The thermal mechanical degradation of high density polyethylene, J. Polym. Sci. (Polym. Symp. Edn), 57, 1–15. 157.

    CAS  Google Scholar 

  161. Whelan, J.P. (1981) Senior divisional engineer, Amoco chemicals corporation, Illinois, Private communication.

    Google Scholar 

  162. Kohan, M.I. (1973) Nylon Plastics, New York, Ch. 4.

    Google Scholar 

  163. Taylor, N.H. (1984) Analytical & Polym. Sci. Group, Res. & Tech. Dept, ICI Wilton, Middlesbrough, Private communication.

    Google Scholar 

  164. Dow Chemicals (1981) Michigan, USA, Private communication.

    Google Scholar 

  165. Westover, R.F. (1959) in Processing of Thermoplastic Materials (ed. E.C. Bernhardt), Van Nostrand, New York, 547–679.

    Google Scholar 

  166. Pritchard, J.H. and Wissbrun, K.F. (1969) Reversible melt flow rate increase of branched acetal polymers, J. Appl. Polym. Sci., 13, 233–9.

    Google Scholar 

  167. E.I. du Pont de Nemours and Co. (1977) Private communication.

    Google Scholar 

  168. Yamada, M. and Porter, R.S. (1974) Compressional effects in the capillary flow of polycarbonate, J. Appl. Poly. Sci., 18, 1711–24.

    CAS  Google Scholar 

  169. Bourne, R. (1984) Technical marketing manager, General Electric Plastics, 4600 AC Bergen Op. Zoom, Netherland, Private communication.

    Google Scholar 

  170. Shenoy, A.V. and Saini, D.R. (1984) Rheological models for unified curves for simplified design calculations in polymer processing, Rheol. Acta, 23, 368–77.

    CAS  Google Scholar 

  171. Shenoy, U.V., Bamane, S. and Shenoy, A.V. (1990) A general rheological model for polymer melts, Paper 771-MT-E17 presented at 40th Canadian Chemical Engg Conference, Halifax (July).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shenoy, A.V. (1999). Steady shear viscous properties. In: Rheology of Filled Polymer Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9213-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9213-0_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4029-9

  • Online ISBN: 978-94-015-9213-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics