Skip to main content

Advances in Understanding of Flame Acceleration for the Improving of Combustion Efficiency

  • Chapter
Heat Transfer Enhancement of Heat Exchangers

Part of the book series: Nato ASI Series ((NSSE,volume 355))

Abstract

The propagation of gaseous explosions is governed by the interaction of chemical kinetics with the molecular and turbulent heat and mass transport. Combustion processes like deflagration and detonation depend on the different valence of physical effects under certain conditions. Geometry and the expansion flow of the flame itself affect the turbulence and therefore the transport of fuel into the reaction zone. The present paper discusses the different hydrogen combustion processes and reports on the experimental investigations of transport phenomena during flame propagation with highly blocking obstacles. Several facilities have been operated with sophisticated optical measurement techniques like high speed schlieren videographie, laser induced predissociation fluorescence and laser doppler velocimetry to obtain detailed information about the combustion process. It will be shown that the turbulent quenching of flames leads to an amount of free radicals resulting in sensitive clouds of those radicals with corresponding high chemical reaction rates, which has a strong influence on the efficiency of the combustion processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brehm N. and Mayinger F., Limits for the transition from Deflagration to Detonation in Hydrogen — Air -Steam Mixtures, final report BMFT RS 1500712, FIZ4, Karlsruhe, 1988

    Google Scholar 

  2. Strube G., Struktur und Brenngeschwindigkeit turbulenter, vorgemischter Wasserstoff-Flammen, Dissertation TU München, 1993

    Google Scholar 

  3. Beauvais R., Brennverhalten vorgemischter, turbulenter Wasserstoff-Luft-Flammen in einem Explosionsrohr, Dissertation TU München, 1994

    Google Scholar 

  4. Strube G., Beauvais R., Mayinger F., Derzeitiger Wissensstand über den Verlauf der Grenze für den Ubergang einer Deflagration in eine Detonation (DDT) im Dreistoff-Diagramm Wasserstoff/Luft/Wasserdampf nach Shapiro/Moffette, Abschlußbericht, TU München, 1988

    Google Scholar 

  5. Ardey N., Durst B. and Mayinger F., Influence of Flame-Obstacle-Interaction on the Structure of Turbulent Deflagrations, Proceedings of the Int. Cooperative Exchange Meeting on Hydrogen in Reactor Safety, Toronto, 1997

    Google Scholar 

  6. McIntosh A. C., Influence of Pressure Waves on the Initial Development of an Explosion Kernel, AIAA Journal, Vol. 33, No. 9, September 1995

    Google Scholar 

  7. Ardey N. and Mayinger F., Flame Acceleration by Turbulent Promotion and Jet Ignition, submitted to Progress in Energy and Combustion Science, Pergamon Press, Oxford, 1998

    Google Scholar 

  8. Jordan M. et al., Influence of Turbulence on the Deflagrative Flame Propagation in Lean Premixed Hydrogen Air Mixtures, FISA-97Symposium on EU Research on Severe Accidents, Luxembourg, 1997

    Google Scholar 

  9. Jordan M., Ardey N., Mayinger F., Effect of Turbulent Transport and Mixing on Flame Acceleration through Highly Blocking Obstacles, 11th International Heat Transfer Conference, Korea, 1998

    Google Scholar 

  10. Kuo K. K., Principles of Combustion, John Wiley & Sons, New York, 1986

    Google Scholar 

  11. Klein R., Breitung W., Rehm W., Olivier H., He L., Armand P., Ang M., Models and Criteria for Prediction of Deflagration-to-Detonation Transition (DDT) in Hydrogen-Air-Steam Systems under Severe Accident Conditions, FISA-97 Symposium, Luxembourg, 1997

    Google Scholar 

  12. Chan C. K., Lau D., Radford D., Transition to Detonation Resulting from Burning in a Confined Vortex, 23rd International Symposium on Combustion, The Combustion Institute, pp. 1797–1804, 1990

    Google Scholar 

  13. Dupré G., Unstable Detonations in the Near-limit Regime in Tubes, 23rd International Symposium on Combustion, The Combustion Institute, pp. 1813–1820, 1990

    Google Scholar 

  14. Vendel J., Armand P., Large Scale Hydrogen-Air-Steam DDT Experiments in the RUT Facility, Hydrogen Combustion Work Group Meeting, Nuclear Safety and Protection Institute, Tokyo, 1978

    Google Scholar 

  15. Peters N., Laminar Flamelet Concepts in Turbulent Combustion, 21st. International Symposium on Combustion, The Combustion Institute, Pittsburgh, 1986

    Google Scholar 

  16. Ciccarelli A., Ginsberg T., Boccio J., Economos C., Sato K., Kinoshita M., Detonation Cell Size Measurements and Predictions in Hydrogen-Air-Steam Mixtures at Elevated Temperatures, Combustion and Flame Vol. 99, pp. 212–220, 1994

    Article  Google Scholar 

  17. Desbordes D., Critical Initiation Conditions for Gaseous Diverging Spherical Detonations, Journal de Physique IV, Colloque C4, suplément au Journal de Physique III, Vol. 5, 1995

    Google Scholar 

  18. Abdel-Gayed R. G., Bradley D., Combustion Regimes and the Straining of Turbulent Premixed Flames, Combustion and Flame, Vol. 76, pp. 213–218, 1989

    Article  Google Scholar 

  19. Eckbreth A. C., Laser Diagnostics for Combustion Temperature and Species, Abacus Press, Tunbridge Wells, UK, 1988

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gerlach, C., Eder, A., Jordan, M., Ardey, N., Mayinger, F. (1999). Advances in Understanding of Flame Acceleration for the Improving of Combustion Efficiency. In: Kakaç, S., Bergles, A.E., Mayinger, F., Yüncü, H. (eds) Heat Transfer Enhancement of Heat Exchangers. Nato ASI Series, vol 355. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9159-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9159-1_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5190-5

  • Online ISBN: 978-94-015-9159-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics