Skip to main content

Polygonal Networks Resulting from Dewetting

  • Chapter
Foams and Emulsions

Part of the book series: NATO ASI Series ((NSSE,volume 354))

Abstract

The occurence of polygonal structures is widespread in nature [1]. Extensive investigations on the statistics of two-dimensional networks have been performed for biological tissues [2, 3], clusters of metal grains [4, 5], systems of soap bubbles [6, 7, 8], emulsion lattices [9], gas bubbles in Langmuir monolayers [10], magnetic froth [11] or convective patterns in hydrodynamics [12, 13, 14]. The strong similarity between structure and evolution of two-dimensional soap froth and grain boundary networks has become a subject of growing interest [15, 16, 17, 6]. These similarities make it difficult to differentiate the networks occuring in different experimental systems. Additionally, one faces a problem if the system is two-dimensional because it is a planar cut of a three-dimensional systems (grain boundary network) or through putting the three-dimensional structure between two narrowly spaced glass plates (soap froth, emulsion lattice, magnetic froth). Here, we will introduce two new experimental systems representing dewetting processes of a thin liquid films on a solid substrates. The oc-curing polygonal networks are intrinsically two-dimensional. After a short introduction of the concepts of wetting and dewetting, the dewetting experiments of polystyrene on silicon and of collagen solution on highly oriented polygraphite are explained. The different stages of the dewetting process will be discussed at these examples. Main features of the resulting structures are analysed by means of stochastic geometry of polygonal networks. The resulting distributions are compared with distributions obtained for two-dimensional soap froth. Typical differences between dewetting patterns and soap froth and between the two dewetting patterns are explained by distinct driving forces behind structure formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Weaire and N. Rivier. Soap, cells and statistics–Random patterns in two dimensions. Contemp. Phys., 25 (1): 59–99, 1984.

    Article  Google Scholar 

  2. F. T. Lewis. The geometry of growth and cell division in columnar parenchyma. Am. J. Bot., 31: 619–29, 1944.

    Article  Google Scholar 

  3. J.C.M. Mombach, M.A.Z. Vasconcellos, and R.M.C. de Almeida. Arrangement of cells in vegetable tissues. J. Phys. D, 23 (5): 600–6, 1990.

    Article  Google Scholar 

  4. D.A. Aboay. The arrangement of cells in a net. iv. Metallography, 18 (2): 129–47, 1985.

    Article  Google Scholar 

  5. D.J. Srolovitz, M.P. Anderson, P.S. Sahni, and G.S. Grest. Computer simulation of grain growth. II. Grain size distribution, topology, and local dynamics. Acta Met, 32 (5): 793–802, 1984.

    Article  CAS  Google Scholar 

  6. J.A. Glazier, M.P. Anderson, and G.S. Grest. Coarsening in the two-dimensional soap froth and the large-q potts model: a detailed comparison. Phil. Mag. B, 62 (6): 615–45, 1990.

    Article  CAS  Google Scholar 

  7. J. Stavans. The evolution of cellular structures. Rep. Prog. Phys., 56 (6): 733–89, June 1993.

    Article  CAS  Google Scholar 

  8. T. Aste, K. Y. Szeto, and W. Y. Tam. Statistical properties and shell analysis in random cellular structures. Phys. Rev. E, 54 (4): 5482–92, 1996.

    Article  CAS  Google Scholar 

  9. D.A. Noever. Statistics of emulsion lattices. Coll. Surf., 62 (2): 243, 1992.

    CAS  Google Scholar 

  10. B. Berge, A.J. Simon, and A. Libchaber. Dynamics of gas bubbles in monolayers. Phys. Rev. A, 41 (12): 6893–900, 1990.

    Article  CAS  Google Scholar 

  11. F. Elias, C. Flament, J.-C. Bacri, and S. Neveu. Macro-organized patterns in ferrofluid layer: Experimental studies. J. Phys. I France, 7: 711–28, 1997.

    Article  CAS  Google Scholar 

  12. B. Simon and M. Belmedani. Cellular convection in shallow layers of aqueous solutions of sucrose: Lewis law. C. R. Acad. Sci., 319 (8): 865–71, Oct. 1994.

    CAS  Google Scholar 

  13. P. Cerisier, S. Rahal, and N. Rivier. Topological correlations in benard-marangoni convective structures. Phys. Rev. E, 54 (3): 5086, 1996.

    Article  CAS  Google Scholar 

  14. U. Thiele and K. Eckert. Stochastic geometry of polygonal networks - an alternative approach to the hexagon-square-transition in Bénard convection. Preprint, 1997.

    Google Scholar 

  15. C. S. Smith. Metal Interfaces, p. 65. American Society for Metals, Cleveland, Ohio, 1952.

    Google Scholar 

  16. D.A. Aboay. Foam and polycrystal. Metallography, 5: 251–63, 1972.

    Article  Google Scholar 

  17. M.A. Fortes and A.C. Ferro. Topology and transformations in cellular structures. Acta Met., 33 (9): 1697–708, 1985.

    Article  CAS  Google Scholar 

  18. P.G. de Gennes. Wetting: statistics and dynamics. Rev. Mod. Phys., 57 (3): 827–63, 1985.

    Article  Google Scholar 

  19. S. Dietrich. Wetting phenomena. Phase Transitions and Critical Phenomena, Vol. 12, p. 1. Academic Press, London, 1988.

    Google Scholar 

  20. F. Brochard-Wyart and J. Daillant. Drying of solids wetted by thin liquid films. Can. J. Phys., 68 (9): 1084–8, 1989.

    Google Scholar 

  21. G. Reiter. Dewetting of thin polymer films. Phys. Rev. Lett., 68 (1): 75–8, 1992.

    Article  CAS  Google Scholar 

  22. K. Jacobs. Stabilität and Dynamik flüssiger Polymerfilme Konstanz, 1997. Phdthesis, ISBN 3–930803–10–0.

    Google Scholar 

  23. A. Sharma and G. Reiter. Instability of thin polymer films on coated substrates: Rupture, dewetting and drop formation. J. Coll. Inter! Sci., 178: 383, 1996.

    Article  CAS  Google Scholar 

  24. K. Jacobs, S. Herminghaus, and G. Schatz. Dominance of defects in thin liquid polymer film rupture. Preprint, 1997.

    Google Scholar 

  25. M. Mertig, U. Thiele, J. Bradt, G. Leibiger, W. Pompe, and H. Wendrock. Scanning force microscopy and geometrical analysis of two-dimensional collagen network formation. Surf. Int. Anal., 25: 514–521, 1997.

    CAS  Google Scholar 

  26. PS: unpublished image by G. Reiter.

    Google Scholar 

  27. Aged soap froth (reanalysed images taken from [1] and [6]; one of them did not yet reach the scaling state), dewetting network of PS films (analysed images taken from [32] and Reiter, G., unpublished) and of collagen films (two different samples, Fig.lc shows part of one of them).

    Google Scholar 

  28. James A. Glazier, S. P. Gross, and J. Stavans. Dynamics of two-dimensional soap froths. Phys. Rev. A, 36 (1): 306–12, 1987.

    Article  Google Scholar 

  29. Same samples as in Fig.2. Additionally analysed are unpublished soap froth images by J. Glazier, PS images from [23] and images of other collagen samples.

    Google Scholar 

  30. J. Moller. Random Johnson-Mehl tessellations. Adv. Appl. Prob., 24: 814, 1992.

    Article  Google Scholar 

  31. J. Moller. Topics in Voronoi and Johnson-Mehl tesselations. In Proc. Séminaire Européen de Statstique, Toulouse, 1996.

    Google Scholar 

  32. G. Reiter. Mobility of polymers in films thinner than their unperturbed size. Europhys. Lett., 23 (8): 579–84, 1993.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Thiele, U., Mertig, M., Pompe, W., Wendrock, H. (1999). Polygonal Networks Resulting from Dewetting. In: Sadoc, J.F., Rivier, N. (eds) Foams and Emulsions. NATO ASI Series, vol 354. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9157-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9157-7_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5180-6

  • Online ISBN: 978-94-015-9157-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics