Skip to main content

Part of the book series: Current Plant Science and Biotechnology in Agriculture ((PSBA,volume 32))

Abstract

In addition to conventional mutation breeding approaches to increase genetic variation for crop improvement, plant tissue cultures also offer opportunities for recovering regenerants with genetic variability. Nearly all types of genetic change detected in plants following irradiation or chemical treatments have also been observed in plant tissue cultures. However, in plant tissue cultures the spectrum of genetic variation may be additionally enhanced by treatment of cultured cells with chemical and physical mutagens (Ahloowalia, 1995; Skirvin et al., 1994). Variation has been observed for phenotypic traits, chromosome number and structure, and biochemical traits in planttissues/regenerants derived from cells, protoplasts, anthers, or other tissues. However, it must be stated at the outset that somaclonal variation has not considerably enhanced the spectrum of useful mutations that have been produced by mutation breeding. Not all the variation produced in tissue cultures is due to mutations; some of it results from paragenetic (epigenetic) changes. Although, variation in plant tissue cultures has been observed for a long time, only in recent years was it categorized and its importance recognized. Plants regenerated from callus have been termed ‘calliclones’ (Skirvin, 1978), and those regenerated from protoplasts as ‘protoclones’ (Shepard, 1981). Larkin and Scowcroft (1981) proposed a more general term, ‘somaclones’, for plants derived from any type of somatic cell culture, and genetic variability originating from such cultures as ‘somaclonal variation’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahloowalia, B. 1995. In vitro mutagenesis for the improvement of vegetatively propagated plants. In: Proceedings, Induced Mutations and Molecular Techniques for Crop Improvement, pp. 531–541. Vienna: International Atomic Energy Agency.

    Google Scholar 

  • Ahloowalia, B.S. and J. Sherington. 1985. Transmission of somaclonal variation in wheat. Euphytica. 34: 525–537.

    Google Scholar 

  • Ahuja, M.R. 1982. Isolation, culture, and fusion of protoplasts: problems and perspects. Silvae Genet. 31: 66–77.

    Google Scholar 

  • Ahuja, M.R. 1983. Somatic cell differentiation and rapid clonal propagation of aspen. Silvae Genet. 32: 131–135.

    Google Scholar 

  • Ahuja, M.R. 1984. Protoplast research in woody plants. Silvae Genet. 33: 32–37.

    Google Scholar 

  • Ahuja, M.R. 1986. Aspen. In: Handbook of Plant Cell Culture, vol. 4, pp. 626–651 (eds D.A. Evans, W.R. Sharp and P.V. Ammirato). New York. Macmillan.

    Google Scholar 

  • Ahuja, M.R. 1987a. Somaclonal variation. In: Cell and Tissue Culture in Forestry, vol. 1, pp. 272–285 (eds J.M. Bonga and D.J. Durzan). Dordrecht: Martinus Nijhoff

    Google Scholar 

  • Ahuja, M.R. 1987b. In vitro propagation of poplars and aspens. In: Cell and Tissue Culture in Forestry, vol. 3, pp. 207–223, (eds J.M. Bonga and D.J. Durzan) Dordrecht: Martinus Nijhoff.

    Google Scholar 

  • Ahuja, M.R. 1988a. Gene transfer in forest trees. In: Genetic Manipulation of Woody Plants, pp. 25–41 (eds J.W. Harper and D.E. Keathley) New York: Plenum.

    Google Scholar 

  • Ahuja, M.R. (ed.), 1988b. Somatic Cell Genetics of Woody Plants. Dordrecht: Kluwer.

    Google Scholar 

  • Ahuja, M.R. 1988c. Gene transfer in woody plants: perspectives and limitations. In: Somatic Cell Genetics of Woody Plants, pp. 83–101 (ed. M.R. Ahuja). Dordrecht: Kluwer.

    Google Scholar 

  • Ahuja, M.R. 1988d. Molecular genetics of transgenic plants. In: Molecular Genetics of Forest Trees, pp. 127–145 (ed. J.E. Hällgren). Umeå: Swedish University of Agricultural Sciences.

    Google Scholar 

  • Ahuja, M.R. 1991a. Woody plant biotechnology: perspectives and limitations. In: Woody Plant Biotechnology, pp. 1–10 (ed. M.R. Ahuja). New York: Plenum.

    Google Scholar 

  • Ahuja, M.R. (ed.) 1991b. Woody Plant Biotechnology. New York: Plenum.

    Google Scholar 

  • Ahuja, M.R. 1993a. Regeneration and germplasm preservation in aspen–Populus. In: Micropropagation of Woody Plants, pp. 187–194 (ed. M.R. Ahuja). Dordrecht: Kluwer.

    Google Scholar 

  • Ahuja, M.R. (ed.) 1993b. Woody Plant Biotechnology. Dordrecht: Kluwer.

    Google Scholar 

  • Ahuja, M.R. 1998. Transgenes and genetic instability. In: Micropropagation, Genetic Engineering, and Molecular Biology of Populus (eds N.B. Keopfenstein, Y.W. Chun, M.S. Kim and M.R. Ahuja). Fort Collins: USDA Forest Service Publishers (in press).

    Google Scholar 

  • Ahuja, M.R. and M. Fladung. 1996. Stability and expression of chimeric genes in Populus. In: Somatic Cell Genetics and Molecular Genetics of Trees, pp. 89–96 (eds M.R. Ahuja, W. Boerjan and D.B. Neale). Dordrecht: Kluwer.

    Google Scholar 

  • Ahuja, M.R., W. Boerjan and D.B. Neale (eds) 1996. Somatic Cell Genetics and Molecular Genetics of Trees. Dordrecht: Kluwer.

    Google Scholar 

  • Antonetti, P.L.E. and J. Pinon. 1993. Somaclonal variation within poplars. Plant Cell, Tissue Org Cult. 35: 99–106.

    Google Scholar 

  • Bajaj, Y.P.S. (ed.) 1990. Biotechnology in Agriculture and Forestry, vol. 11: Somaclonal Variation in Crop Improvement, I. Berlin: Springer Verlag.

    Google Scholar 

  • Bajaj, Y.P.S. (ed.) 1996. Biotechnology in Agriculture and Forestry, vol. 36: Somaclonal Variation in Crop Improvement, II. Berlin: Springer Verlag.

    Google Scholar 

  • Baldursson, S. and M.R. Ahuja. 1996a. Haploidy in forest trees. In: In Vitro Haploid Production in Higher Plants, vol. 3 pp. 297–336 (eds S.M. Jain, S.K. Sopory and R.E. Veilleux). Dordrecht: Kluwer.

    Google Scholar 

  • Baldursson, S. and M.R. Ahuja. 1996b. Cytogenetics and potential of haploidy in forest tree genetics and improvement. In: In Vitro Haploid Production in Higher Plants, vol. 1, pp. 49–66 (eds S.M. Jain, S.K. Sopory and R.E. Veilleux). Dordrecht: Kluwer.

    Google Scholar 

  • Baldurosson, S., J.V Nørgaard and P. Krogstruip. 1993a. Factors influencing haploid callus initiation and proliferation in megagametophyte cultures of sitka spruce (Picea sitchensis). Silvae Genet. 42: 79–86.

    Google Scholar 

  • Baldursson, S., J.V. Nørgaard, P. Krogstrup and S.B. Anderson. 1993b. Microspore embryogenesis in anther cultures of three species of Populus and regeneration of dihaploid plants of Populus trichocarpa. Can J For Res. 23: 1812–1825.

    Google Scholar 

  • Bayliss, M. 1980. Chromosomal variation in plant tissue culture. Int Rev Cytol. Suvpl. 11B: 113–144.

    Google Scholar 

  • Ben-Hayyim, G. and Y. Goffer. 1989. Plantlet regeneration from NaCI-selected salt tolerant callus cultures of Shamouti orange (Citrus sinensis L. Osbeck). Plant Cell Rep. 7: 680–683.

    CAS  Google Scholar 

  • Boerjan, W., H. Meyermans, C. Chen, J.C. Leplé, J.H. Christensen, J. van Doorsselaeré, M. Baucher, M. Petit-Conil, C. Chabbert, M.T. Tollier, B. Montes, G. Pilate, D. Cornu, D. Inze, L. Jouanin and M. van Montagu. 1996. Genetic engineering of lignin biosynthesis in poplar. In: Somatic Cell Genetics and Molecular Genetics of Trees, pp. 81–88 (eds M.R. Ahuja, W. Boerjan and D.B. Nesle). Dordrecht: Kluwer.

    Google Scholar 

  • Bonga, J.M., 1981. Haploid tissue culture and cytology of conifers. In: Colloque International sur la Culture In Vitro des Essence Forestieres. IUFRO Proc., Section S2–01-5, Fontainbleau, France, pp. 283–294.

    Google Scholar 

  • Bonga, J.M. and D.J. Durzan. 1987. Cell and Tissue Culture in Forestry, vols 1–3. Dordrecht: Martinus Nijhoff.

    Google Scholar 

  • Bonga, J.M. and P. von Aderkas. 1992. In Vitro Culture of Trees. Dordrecht: Kluwer.

    Google Scholar 

  • Bonga, J.M., P. von Aderkas and D. James. 1988. Potential application of haploid cultures of tree species. In: Genetic Manipulation of Woody Plants, pp. 57–78 (eds J.W. Hanover and D.E. Keathley). New York: Plenum.

    Google Scholar 

  • Brand, M.H. and R.D. Lineberger. 1988. In vitro adventitious shoot formation on mature phase leaves and petioles of Liquidamber styraciflua L. Plant Sci. 57: 173–179.

    CAS  Google Scholar 

  • Brettel, R.I.S., E.S. Dennis, W.R. Scowcroft and W.J. Peacock. 1986. Molecular analysis of somaclonal variation of maize alcohol dehydrogenase. Mol Gen Genet. 22: 235–239.

    Google Scholar 

  • Brown, P.T.H. 1989. DNA methylation in plants and its role in tissue culture. Genome. 31: 717–729.

    CAS  Google Scholar 

  • Chaleff, R.S. 1981. Genetics of Higher Plants. Applications of Cell Culture. London: Cambridge University Press.

    Google Scholar 

  • Charest, P.J. and M.F. Michel. 1991. Basics of Plant Genetic Engineering and its Potential Application to Tree Species. Information Report PI-X-104. Petawawa National Forestry Institute, Canada

    Google Scholar 

  • Chen, Z., 1986. Induction of androgenesis in woody plants. In: Haploids of Higher Plants In Vitro, pp. 42–66 (eds H. Hy and H. Yang). Berlin: Springer Verlag.

    Google Scholar 

  • Chen, Z. 1987. Induction of androgenesis in hardwood trees. In: Cell and Tissue Culture in Forestry, vol. 2, pp. 247–268 (eds J.M. Bonga and D.J. Durzan). Dordrecht: Martinus Nijhoff.

    Google Scholar 

  • Chen, Z. 1990. Rubber (Hevea brasiliensis Muell. Arg.): in vitro production of haploids. In: Biotechnology in Agriculture and Forestry, vol. 12: Haploids in Crop Improvement, I, pp. 215–236 (eds. Y.P.S. Bajaj). Berlin: Springer Verlag.

    Google Scholar 

  • Chen, Z. and M.R. Ahuja. 1993. Regeneration and genetic variation in plant tissue cultures. In: Clonal Forestry, I: Genetics and Biotechnology, pp. 87–100 (eds. M.R. Ahuja and W.J. Libby). Berlin: Springer Verlag.

    Google Scholar 

  • Cullis, C.A. and G.P. Grissen. 1987. Genome organization and variation in higher plants. Ann. Bot. 60 (Suppl. 4): 103–113.

    CAS  Google Scholar 

  • D’Amato, F. 1978. Chromosome number variation in cultured cells and regenerated plants. In: Frontiers of Plant Tissue Culture. 1978, pp. 287–295 (ed. T.A. Thorpe). Alberta: International Association of Plant Tissue Culture, University of Calgary.

    Google Scholar 

  • Dandekar, A.M. 1992. Transformation. In: Biotechnology of Perennial Fruit Crops, pp. 141–168 (eds F.A. Hammerschlog and R.E. Litz). Wallingted: CAB International.

    Google Scholar 

  • De Verno, L.L., P.J. Charest and L. Bonen. 1994. Mitochondrial DNA variation in somatic embryogenic cultures of Larix. Appl theor Genet. 88: 727–732.

    Google Scholar 

  • Diner, A.M. and D.F. Karnosky. 1987. Tissue culture applications of forest pathology and pest control. In: Cell and Tissue Culture in Forestry, vol. 2, pp. 351–373 (eds J.M. Bonga and D.J. Durzan). Dordrecht: Martinus Nijhoff.

    Google Scholar 

  • Donahue, R.A., T.D. Davis, C.H. Michler, D.E. Riemenschneider, D.R. Carter, P.E. Marquardt, N. Sankhala, D. Sankhala, D.E. Haissig, and J.G. Isebrands. 1994. Growth, photosynthesis, and herbicide tolerance of genetically modified hybrid poplar. Can J For Res. 24: 2377–2384.

    Google Scholar 

  • Ellis, D.D., J. Rintamaki-Strait, K. Francis, K. Kliener, K. Raffa and B.H. McCown. 1996. Transgene expression in spruce and poplar: From the lab to the field. In: Somatic Cell Genetics and Molecular Genetics of Trees, pp. (eds M.R. Ahuja, W. Boerjan and D.B. Neole). Dordrecht: Kluwer.

    Google Scholar 

  • Evans, D.A. 1989. Somaclonal variation — genetic variation and breeding applications. Trends Genet. 5: 46–50.

    PubMed  CAS  Google Scholar 

  • Evans, D.A. and W.R. Sharp. 1983. Single gene mutations in tomato plants regenerated from tissue culture. Science. 221: 949–951.

    PubMed  CAS  Google Scholar 

  • Evans, D.A. and W.R. Sharp. 1986. Applications of somaclonal variation. Bio/Technology. 4: 528–532.

    Google Scholar 

  • Evans, D.A., W.R. Sharp and H.P. Medina-Filho. 1984. Somaclonal and gametoclonal variation. Am JBot. 71: 759–774.

    Google Scholar 

  • Fillatti, J.J., J. Selmer, B. McCown, B. Haissig and L. Comai. 1987. Agrobacterium mediated transformation and regeneration in Populus. Mol Gen Genet. 206: 192–199.

    CAS  Google Scholar 

  • Finnegan, J. and D. McElroy. 1994. Transgene inactivation: transgenes fight back. Bio/Technology. 12: 883–888.

    Google Scholar 

  • Fladung, M. and M.R. Ahuja. 1995. ‘Sandwich’ method for non-radioactive hybridization. Biotechniques. 18: 3–5.

    Google Scholar 

  • Fladung, M., S. Kumar and M.R. Ahuja. 1997. Genetic transformation of Populus genotypes with different gene constructs: transformation efficiency and molecular analysis. Transgen Res. 6: 111–121.

    CAS  Google Scholar 

  • Flavell, R.B. 1994. Inactivation of gene expression in plants as a consequence of specific sequence duplication. Proc Natl Acad Sci USA. 91: 3490–3496.

    PubMed  CAS  Google Scholar 

  • Fourré, J.L., P. Berger and P. André. 1996. Somatic embryogenesis and somaclonal variation in Norway spruce: cytogenetic and molecular approaches. In: Somatic Cell Genetics and Molecular Genetics of Trees, pp. 39–45 (eds M.R. Ahuja, W. Boerjan and D.B. Nede). Dordrecht: Kluwer.

    Google Scholar 

  • Fry, D.J., G.C. Douglas and N.Th. Saieed. 1998. Somaclonal variation in Populus — an evaluation. In: Micropropagation, Genetic Engineering and Molecular Biology of Populus (eds N.B. Keopfenstein, Y.W. Chun, M.S. Kim and M.R. Ahuja). Fort Collins: USDA Forest Service Publishers (In Press).

    Google Scholar 

  • Gajdosova, A. and B. Vookova. 1991. Karyological study of Abies sp. callus culture. Biolog Bratislava. 46: 211–217.

    Google Scholar 

  • George, L. and P.S. Rao. 1983. Yellow seeded variants in in vitro regenerants of mustard (Brassica juncea Coss var. RAI-5). Plant Sci Lett. 30: 327–330.

    Google Scholar 

  • Gould, A.R. 1986. Factors controlling generation of variability in vitro. In: Cell Culture and Somatic Cell Genetics of Plants, vol. 3, pp. 549–567 (ed. I.K. Vasil). New York: Academic Press.

    Google Scholar 

  • Groose, R.W. and E.T. Bingham. 1984. Variation in plants regenerated from tissue culture of tetraploid alfalfa heterozygous for several traits. Crop Sci. 24: 655–658.

    Google Scholar 

  • Hammerschlag, F.A., 1990. Somaclonal variation in peach. In: Biotechnology in Agriculture and Forestry, vol. 11: Somaclonal Variation in Crop Improvement, I, pp. 529–537 (ed. Y.P.S. Bajaj). Berlin: Springer Verlag.

    Google Scholar 

  • Hammerschlag, F.A., 1992. Somaclonal variation. In: Biotechnology of Perennial Fruit Crops, pp. 35–55 (eds F.A. Hammerschlag and R.E. Litz). Wallingfold: CAB International.

    Google Scholar 

  • Heinz, B. and J. Schmidt. 1994. Clonal fidelity of Norway spruce somatic embryos analysed by RAPD. In: Biotechnology of Trees, pp. 143–148 eds J.A. Pardos, M.R. Ahuja and R.E. Rossello). Madrid: Investigacion Agraria Sistemas Y Recursos Forestales, INIA.

    Google Scholar 

  • Ho, R.H. and Y. Raj. 1985. Haploid plant production through anther culture of poplars. For Ecol Manage. 13: 133–142.

    Google Scholar 

  • Hobbs, S.L.A., P. Kpodar and C.M.O. DeLong. 1990. The effect of copy number, position and methylation on reporter gene expression in tobacco transformants. Plant Mol Biol. 15: 851–864.

    PubMed  CAS  Google Scholar 

  • Hobbs, S.L.A., T.D. Warkentin and C.M.O. DeLong. 1993. Transgene copy number can be positively or negetatively associated with transgene expression. Plant Mol Biol. 21: 17–26.

    PubMed  CAS  Google Scholar 

  • Huang, Y., D.F. Karnosky and C.G. Tauer. 1993. Application of biotechnology and molecular genetics to tree improvement. JArboricult. 19: 84–98.

    Google Scholar 

  • Huhtinen, O., J. Honkanen and L.K. Simola. 1981. Effects of genotype and nutrient media on callus production and differentiation in Norway spruce endosperm cultured in vitro. In: Colloque International sur la Culture In Vitro des Essence Forestires. IUFRO S2 01 5, pp. 307–311, Fountainbleau, France.

    Google Scholar 

  • Isabel, N., L. Tremblay, M. Michaud, F.M. Tremblay and J. Bousquet. 1993. RAPDs as an aid to evaluate the genetic integrity of somatic embryogenesis-derived populations of Picea mariana (Mill.). Theor Appl Genet. 86: 81–87.

    CAS  Google Scholar 

  • Isabel, N., R. Boivin, C. Levasseur, P.M. Charest, J. Bousquet and F.M. Tremblay. 1995. Evidence of somaclonal variation in somatic embryo-derived plantlets of white spruce (Picea glauca (Moench) Voss.). In: Current Issues in Plant Molecular and Cellular Biology, pp. 247–252 (eds M. Terzi, R. Cella and A. Falavigna). Dordrecht: Kluwer.

    Google Scholar 

  • Jain, S.M., P.K. Gupta and R.J. Newton (eds) 1995. Somatic Embryogenesis in Woody Plants, vols. 1–3. Dordrecht: Kluwer.

    Google Scholar 

  • Jehan, H.H., S. Brown, D. Marie, M. Noin, M. Prouteau and D. Chiriqui. 1994. Ontogenesis and ploidy level of plantlet regenerated from Populus trichocarpa × deltoides cv. Hunnegem Root, leaf and stem explants. J Plant Physiol. 144: 576–585.

    CAS  Google Scholar 

  • Jorgensen, R. 1995. Cosuppression, flower color, patterns, and metastable gene expression states. Science 268: 686–691.

    PubMed  CAS  Google Scholar 

  • Jouanin, L., A.C.M. Brasileiro, J.C. Leple, G. Pilate and C. Cornu. 1993. Genetic transformation: a short review of methods and applications, results and perspectives for forest trees. Ann Sci For. 50: 325–336.

    Google Scholar 

  • Karp, A. and S.W.J. Bright. 1985, On the causes and origin of somaclonal variation. Oxford Surveys Plant Mol Cell Biol. 2: 199–234.

    Google Scholar 

  • Kaeppler, S.M. and R.L. Phillips. 1993. DNA methylation and tissue culture-induced variation in plants. In Vitro Cell Dev Biol. 29: 125–130.

    Google Scholar 

  • Kemble, R.J. and J.F. Shepard. 1984. Cytoplasmic DNA variation in potato protoclonal population. Theor Appl Genet. 69: 211–216.

    CAS  Google Scholar 

  • Klopfenstein, N.B., H.S. McNabb, E.R. Hart, R.D. Hanna, S.A. Heuchelin, K.K. Allen, N.Q. Shi and R.W. Thornburg. 1993. Transformation of Populus hybrids to study and improve pest resistance. Silvae Genet. 42: 86–90.

    Google Scholar 

  • Krikorian, A.D., S.A. O’Connor and M.S. Fitter. 1989. Chromosome variation and karyotype stability in cultures and culture-derived plants. In: Handbook of Plant Cell Culture, vol. 1, pp. 541–581 (eds D.A. Evans, W.R. Sharp, P.V. Ammirato and Y. Yanada). New York: Macmillan.

    Google Scholar 

  • Larkin, P.J. and W.R. Scowcroft. 1981. Somaclonal variation – a novel source of variability from cell cultures for plant improvement. Theor Appl Genet. 60: 197–214.

    Google Scholar 

  • Larkin, P.J. and W.R. Scowcroft. 1983. Somaclonal variation and eyespot toxin tolerance in sugarcane. Plant Cell Tissue Organ Cult. 2: 111–121.

    CAS  Google Scholar 

  • Larkin, P.J., S.A. Ryan and W.R. Scowcroft. 1984. Heritable somaclonal variation in wheat. Theor Appl Genet. 67: 443–455.

    CAS  Google Scholar 

  • Leach, G.N. 1979. Growth in soil of plantlets produced by tissue culture, loblolly pine. TAPPI. 62: 59–61.

    Google Scholar 

  • Lester, D.T. and J.G. Berbee. 1977. Within clone variation among black poplar trees derived from callus cultures. For Sci. 23: 122–131.

    Google Scholar 

  • Lianfang, F. 1990. Litchi (Litchi sinensis Sonn.): In vitro production of haploid plants. In: Biotechnology in Agriculture and Forestry, vol. 12: Haploids in Crop Improvement, I, pp. 264–274 (ed. Y.P.S. Bajaj). Berlin: Springer Verlag.

    Google Scholar 

  • Marcotrigiano, M. and L. Jagannathan. 1988. Paulownia tomentosa ‘Somaclonal Snowstorm’. HortScience. 23: 226–227.

    Google Scholar 

  • Matzke, M.A. and A.J.M. Matzke. 1995. How and why do plants inactivate homologous trans(genes)? Plant Physiol. 107: 679–685.

    PubMed  CAS  Google Scholar 

  • McClintock, B. 1984. The significance of responses of the genome to challenge. Science. 226: 792–801.

    PubMed  CAS  Google Scholar 

  • Meins, F. Jr. 1983. Heritable variation in plant cell culture. Annu Rev Plant Physiol. 34: 327–346.

    Google Scholar 

  • Meins, F. Jr. 1989, Habituation: heritable variation in requirement of culture plant cells for hormones. Annu Rev Genet. 23: 398–408.

    Google Scholar 

  • Meyer, P. (ed.) 1995. Gene Silencing in Higher Plants and Related Phenomena in other Eukaryotes. Berlin: Springer Verlag.

    Google Scholar 

  • McKeand, S.A. and H.L. Allen. 1984. Nutritional and root development factors affecting growth of tissue culture plantlets of loblolly pine. Physiol Plant. 61: 523–528.

    CAS  Google Scholar 

  • Michler, C.H. 1993. In vitro genetic selection for woody plant improvement. In: Micropropagation of Woody Plants, pp. 443–455 (ed. M.R. Ahuja). Dordrecht: Kluwer.

    Google Scholar 

  • Michler, C.H. and E. Bauer. 1988. Selection for herbicide tolerance in plant cell cultures of Populus. In: Genetic Manipulation of Woody Plants, pp. 478–480 (eds J.W. Hanover and D.E. Keathley). New York: Plenum.

    Google Scholar 

  • Michler, C.H. and B.E. Haissig. 1988. Increased herbicide tolerance of in vitro selected hybrid poplar. In: Somatic Cell Genetics of Woody Plants, pp. 183–189 (ed. M.R. Ahuja). Dordrecht: Kluwer.

    Google Scholar 

  • Michler, C.H., T.M. Voelker and E.O. Bauer. 1989. Production of putative herbicide tolerant plants from somatic embryos regenerated from in vitro selected callus. In Vitro Cell Dev Biol. 25: 62A.

    Google Scholar 

  • Nilsson, O., C.H.A. Little, G. Sandberg and O. Olsson. 1996. Expression of two heterologous promoters, Agrobacterium rhizogenes rolC and Cauliflower Mosaic virus 35S, in the stem of transgenic hybrid aspen plants during the annual cycle of growth and dormancy. Plant Mol Biol. (In press).

    Google Scholar 

  • Ochatt, S.J. and J.B. Power. 1989. Selection for salt and drought tolerance in protoplast- and explantderived tissue culture of cold cherry (Prunus avium × pseudocarpus.) Tree Physiol. 5: 259–266.

    PubMed  Google Scholar 

  • Ostry, M.E. and C.H. Michler. 1993. Use of biotechnology for tree improvement in Populus model systems. In: Micropropagation of Woody Plants, pp. 471–483 (ed. M.R. Ahuja). Dordrecht: Kluwer.

    Google Scholar 

  • Ostry, M.E. and D.D. Skilling. 1988. Somatic variation in resistance of Populus to Septoria musiva. Plant Dis. 72: 724–727.

    Google Scholar 

  • Pardos, J.A., M.R. Ahuja and R.E. Rossello (eds) 1994. Biotechnology of Trees. Madrid: Investigacion Agraria Sistemas Y Recursos Forestales, INIA.

    Google Scholar 

  • Phillips, R.L., S.M. Kaeppler and P. Ohlhoft. 1994. Genetic instability of plant tissue cultures: breakdown of normal controls. Proc Natl Acad Sci USA. 91: 5222–5226..

    PubMed  CAS  Google Scholar 

  • Prakash, C.S. and B.A. Thielges. 1989. Somaclonal variation in eastern cottonwood for race-specinc partial resistance to leaf rust. Phytopathology. 79: 805–808.

    Google Scholar 

  • Pröls, F. and P. Meyer. 1992. The methylation pattern of chromosomal integration regions influence gene activity of transferred DNA in Petunia hybrida. Plant J. 2: 465–475.

    Google Scholar 

  • Radojevic, L. and D. Trajkovic. 1983. A study of albinism in androgenic embryos of Aesculus hippocastanum L. Period Biol. 85: 172–174.

    Google Scholar 

  • Riemenschneider, D.E. and B.E. Haissig. 1991. Producing herbicide tolerant Populus using genetic transformation mediated by Agrobacterium tumefaciens C58: a summary of recent research. In: Woody Plant Biotechnology, pp. 247–263 (ed. M.R. Ahuja). New York: Plenum Press.

    Google Scholar 

  • Riemenschneider, D.E., B.E. Haissig, J. Selmer and J. Fillatti. 1988. Expression of herbicide tolerance gene in young plants of transgenic hybrid poplar clone. In: Somatic Cell Genetics of Woody Plants, pp. 73–80 (ed. M.R. Ahuja). Dordrecht: Kluwer.

    Google Scholar 

  • Saieed, N.Th., G.C. Douglas and D.J. Fry. 1994a. Induction and stability of somaclonal variation in growth, leaf phenotype and gas exchange characteristics in poplar regenerated from callus culture. Tree Physiol. 14: 1–13.

    Google Scholar 

  • Saieed, N.Th., G.C. Douglas and D.J. Fry. 1994b. Somaclonal variation in growth, leaf phenotype and gas exchange characteristics of polar: utilization of leaf phenotype as a basis for selection. Tree Physiol. 14: 17–26.

    Google Scholar 

  • Serres, R., M. Ostry, B. McCown and D. Skilling. 1991. Somaclonal variation in Populus hybrids regenerated from protoplast cultures. In: Woody Plant Biotechnology, pp. 59–61 (ed. M.R. Ahuja). New York: Plenum.

    Google Scholar 

  • Shepard, J.F. 1981. Protoplasts as source of disease resistance in plants. Annu Rev Phytopathol. 19: 145–155.

    CAS  Google Scholar 

  • Shepard, J.F., D. Bidney and E. Shahin. 1980. Potato protoplasts in crop improvement. Jcience 208: 17–24.

    CAS  Google Scholar 

  • Simola, L.K. and J. Honkanen. 1983. Organogenesis and fine structure in megagametophyte callus lines of Picea abies. Physiol Plant. 59: 551–561.

    CAS  Google Scholar 

  • Skene, K.G.M. and M. Barlass. 1983. Response to NaCl of grapevines regenerated from multiple shoot cultures exhibiting mild salt tolerance in vitro. Am J Enol Vitic. 39: 82–85.

    Google Scholar 

  • Skirvin, R.M. 1978. Natural and induced variation in tissue culture. Euphytica. 27: 241–266.

    Google Scholar 

  • Skirvin, R.M., H. Abu-Qaoud, S. Sriskandarajah and D.E. Harry. 1993. Genetics of micropropagated woody plants. In: Micropropagation of Woody Plants, pp. 121–152 (ed. M.R. Ahuja). Dordrecht: Kluwer.

    Google Scholar 

  • Skirvin, R.M., K.D. McPheeters and M. Norton. 1994. Sources and frequency of somaclonal variation. HortScience. 29: 1232–1237.

    Google Scholar 

  • Smulders, M.J.M., W. Rus-Kortekaas and B. Vosman. 1995. Tissue culture-induced DNA methylation polymorphisms in repetitive DNA of tomato calli and regenerated plants. Theor Appl Genet. 91: 1257–1264.

    CAS  Google Scholar 

  • Spiegel-Roy, P. and G. Ben-Hayyim. 1985. Selection and breeding for salinity resistance in vitro. Plant Soil. 89: 243–252.

    CAS  Google Scholar 

  • Sree Ramulu, K., P. Dijkhuis and S. Roest. 1983. Phenotypic variation and ploidy level of plants regenerated from protoplasts of tetraploid potato (Solanum tuberosum L. cv. Bintje). Theor Appl Genet. 65: 329–338.

    Google Scholar 

  • Son, S.H., H.K. Moon and R.B. Hall. 1993. Somaclonal variation in regenerants from callus culture of hybrid aspen (Populus alba L. × P. grandidentata Michx.). Plant Sci. 90: 89–94.

    CAS  Google Scholar 

  • Stoehr, M.U. and L. Zsuffa. 1990a. Induction of haploids in Populus maximowiczii via embryogenic callus. Plant Cell, Tissue Organ Cult. 23: 49–58.

    Google Scholar 

  • Stoehr, M.U. and L. Zsuffa. 1990b. Genetic evaluation of haploid clonal lines of a single donor plant of Populus maximowviczii. Theor Appl Genet. 80: 470–474.

    Google Scholar 

  • Stoehr, M.U., L. Zsuffa and J.E. Eckenwalder. 1988. Anomalous solitary flowers on anther derived plants of Populus maximowiczii. Am J Bot. 75: 594–597.

    Google Scholar 

  • Strauss, S.H., W.H. Rottmann, A.M. Brunner and L.A. Sheppard. 1995. Genetic engineering of reproductive sterility in forest trees. Mol Breed. 1: 5–26.

    CAS  Google Scholar 

  • Sun, Z.X., C.Z. Zhao, K.L. Zheng, X.F. Qi and Y.P. Fu. 1983. Somaclonal genetics of rice, Oryza sativa L. Theor Appl Genet. 67: 67–73.

    Google Scholar 

  • Tsai, C.J., G.K. Podila and V.L. Chiang. 1994. Agrobacterium-mediated transformation of quaking aspen (Populus tremuloides) and regeneration of transgenic plants. Plant Cell Rep. 14: 94–97.

    CAS  Google Scholar 

  • Uddin, M.R., M.M. Meyer and J.J. Jokela. 1988. Plantlet production from anthers of eastern cottonwood (Populus deltoides). Can J For Res. 18: 937–941.

    Google Scholar 

  • Valentine, F., S. Baker, R. Belanger, P. Manion and D. Griffin. 1988. Screening for resistance to Hypoxylon mammatum in Populus tremuloides callus and micropropagated plantlets. In: Somatic Cell Genetics of Woody Plants, p. 181 (ed. M.R. Ahuja). Dordrecht: Kluwer.

    Google Scholar 

  • Von Aderkas, P. and J.M. Bonga. 1993. Plants from haploid cultures of Larix decidua. Theor Appl Genet. 87: 225–228.

    Google Scholar 

  • Von Aderkas, P., K. Klimaszewska and J.M. Bonga. 1990. Diploid and haploid embryogenesis in Larix leptolepis, and L. decidua, and their hybrids. Can J For Res. 20: 9–14.

    Google Scholar 

  • Whetten, R. and R.R. Sederoff. 1991. Genetic engineering of wood. For Ecol Manage. 43: 310–316.

    Google Scholar 

  • Wu, K. and P. Nagarajan. 1990. Poplars (Populus spp.): In vitro production of haploids. In: Biotechnology in Agriculture and Forestry, vol. 12: Haploids in Crop Improvement, I, pp. 237–249 (ed. Y.P.S. Bajaj). Berlin: Springer Verlag.

    Google Scholar 

  • Yurkova, G.N., B.A. Levenko and P.V. Novozhilov. 1982. Plant regeneration in wheat tissue culture. Biochem Physiol Pflanz. 177: 337–344.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ahuja, M.R. (1998). Somaclonal Genetics of Forest Trees. In: Jain, S.M., Brar, D.S., Ahloowalia, B.S. (eds) Somaclonal Variation and Induced Mutations in Crop Improvement. Current Plant Science and Biotechnology in Agriculture, vol 32. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9125-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9125-6_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4956-8

  • Online ISBN: 978-94-015-9125-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics