Somaclonal Variation: Mechanism and Applications in Crop Improvement

  • D. S. Brar
  • S. M. Jain
Part of the Current Plant Science and Biotechnology in Agriculture book series (PSBA, volume 32)


Somaclonal variation refers to the variation arising in cell cultures, regenerated plants and their progenies, and this general term was given by Larkin and Scowcroft (1981). However, other types of variation arise by specific culture of cells or tissues, which include culture of: protoplasts (protoclonal); anthers and microspores (gametoclonal); callus (calliclonal); apical meristem (mericlonal); leaf, stem, root or other somatic tissues (somaclonal). There are different approaches to create somaclonal variation, which include: (1) growth of callus or cell suspension cultures for several cycles; (2) regeneration of a large number of plants from such long-term cultures; (3) screening for desirable traits in the regenerated plants and their progenies, e.g. in-vitro selection to select agronomically desirable somaclones for tolerance to various biotic and abiotic stresses using toxic levels of pathotoxins, herbicides, salts, etc.; (4) testing of selected variants in subsequent generations for desired traits; and (5) multiplication of stable variants to develop new breeding lines.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahloowalia, B.S. 1983. Spectrum of variation in somaclones of triploid ryegrass. Crop Sci. 23: 1141–1147.CrossRefGoogle Scholar
  2. Arnholdt-Schmitt, B. 1995. Physiological aspects of genome variability in tissue culture. II. Growth phase-dependent quantitative variability of repetitive BstNl fragments of primary cultures of Daucus carota L. Theor Appl Genet. 91: 816–823.Google Scholar
  3. Banks, P.M. and P.J. Larkin 1995. Registration of three BYDV-resistant wheat germplasm. TC5, TC6 and TC9. Crop Sci. 35: 599–600.CrossRefGoogle Scholar
  4. Banks, P.M., P.J. Larkin, H.S. Bariana, E.S. Lagudah, R. Apples, P.M. Waterhouse, R.I.S. Brettell, X. Chen, H.J. Xu, Z.Y. Xin, Y.T. Qian, X.M. Zhou, Z.M. Cheng and G.H. Zhou 1995. The use of cell culture for subchromosomal introgressions of barley yellow dwarf virus resistance from Thinopyrum intermedium to wheat. Genome. 38: 395–405.PubMedCrossRefGoogle Scholar
  5. Barakat, M.N. and T.H. Abdel-Latif 1996. In vitro selection of wheat callus tolerant to high levels of salt and plant regeneration. Euphytica. 91: 127–140.Google Scholar
  6. Bebeli, P.J., P.J. Kaltsikes and A. Karp. 1993a. Field evaluation of somaclonal variation in triticale lines differing in telomeric heterochromatin, J Genet Breed. 47: 248–249.Google Scholar
  7. Bebeli, P.J., P.J. Kaltsikes and A. Karp. 1993b. Field evaluation of somaclonal variation in triticale lines differing in telomeric heterochromatin, J Genet Breed. 47: 15–22.Google Scholar
  8. Bebeli, P., A. Karp and P.J. Kaltsikes 1988. Plant regeneration from cultured immature embryos of sister lines of rye and triticale differing in their content of heterochromatin I. Morphogenetic response. Theor Appl Genet. 75: 929–936.Google Scholar
  9. Behnke, M. 1979. Selection of potato callus for resistance to culture filtrates of Phytophthora infestans and regeneration of resistant plants. Theor Appl Genet. 55: 69–71.CrossRefGoogle Scholar
  10. Behnke, M. 1980. Selection of dihaploid potato callus for resistance to culture filtrate of Fusarium oxysporum. Z Pflanzenzücht. 85: 254–258.Google Scholar
  11. Brack, C., M. Hirama, R. Lehnard-Schueller and S. Tonegawa 1978. A complete immunoglobulin gene is created by somatic recombination. Cell. 15: 1–4.PubMedCrossRefGoogle Scholar
  12. Brar, D.S. and G.S. Khush 1994. Cell and tissue culture for plant improvement. In: Mechanisms of Plant Growth and Improved Productivity: Modern Approaches pp. 229–278 (ed. A. Basra) New York: Marcel Dekker.Google Scholar
  13. Breiman, A., T. Felsenburg and E. Galun 1987a. Nor loci analysis in progenies of plants regenerated from the scutellar callus of breadwheat: a molecular approach to evaluate somaclonal variation. Theor Appl Genet. 74: 104–112.CrossRefGoogle Scholar
  14. Breiman, A., D. Rotem-Abarbanell, A. Karp and H. Shaskin 1987b. Heritable somaclonal variation in wild barley, Hordeum spontaneum. Theor Appl Genet. 71: 637–643.Google Scholar
  15. Brettell, R.I.S. and D.S. Ingram 1979. Tissue culture in the production of novel disease-resistant crop plants. Biol Rev. 5: 329–345.CrossRefGoogle Scholar
  16. Brettell, R.I.S., E.S. Dennis, W.R. Scowcroft and W.J. Peacock 1986. Molecular analysis of a somaclonal variant of maize alcohol dehydrogenase. Mol Gen Genet. 202: 235–239.CrossRefGoogle Scholar
  17. Brown, P.T.H., E. Gobel and H. Lorz 1991. RFLP analysis of Zea mays callus cultures and their regenerated plants. Theor Appl Genet. 81: 227–232.CrossRefGoogle Scholar
  18. Brown, P.T.H., J. Kyozuka, Y. Sukekiyo, Y. Kimura, K. Shimamoto and H. Lörz 1990. Molecular changes in protoplast derived plants. Mol Gen Genet. 223: 324–328.PubMedCrossRefGoogle Scholar
  19. Buiatti, M. and F. Gimelli 1993. Somaclonal variation in ornamentals. In: Creating Genetic Variation in Ornamentals, pp. 5–24 (eds T. Schiva and A. Mercuri). San Remo: Instituto Sperimentale per la Floricoltura.Google Scholar
  20. Burk, L.G. and D.F. Matzinger 1976. Variation among anther-derived doubled haploids from an inbred line of tobacco. J Hered. 67: 381–384.Google Scholar
  21. Carlson, P.S. 1973. Methionine sulfoximine-resistant mutants of tobacco. Science. 180: 1366–1368.PubMedCrossRefGoogle Scholar
  22. Cassells, A.C., M. Coleman, G. Farrell, R. Long, E.M. Goetz and V. Boyton. 1986. Screening for virus resistance in tissue culture adventitious regenerants and their progeny. In: Genetic Manipulation in Plant Breeding, pp. 535–545 (eds W. Horn, C.J. Jensen, W. Odenbach and O. Schieder). Berlin: Walter de Gruyter.Google Scholar
  23. Chaleff, R. and C. Mauvais 1984. Acetolactase synthase is the site of action of two sulfonylurea herbicides in higher plants. Science. 224: 1443–1445.PubMedCrossRefGoogle Scholar
  24. Chaleff, R. and N. Parsons. 1978. Direct selection in vitro for herbicide-resistant mutants of Nicotiana tabacum. Proc Natl Acad Sci USA. 75: 5104–5107.PubMedCrossRefGoogle Scholar
  25. Chaleff, R.S. and T.B. Ray. 1984. Herbicide resistant mutants from tobacco cell cultures. Science. 223: 1148–1151.PubMedCrossRefGoogle Scholar
  26. Chaplin, J.F., L.G. Burk, G.V. Gooding and N.T. Powell 1980. Registration of NC744 tobacco germplasm. Crop Sci. 20: 677.CrossRefGoogle Scholar
  27. Chawla, H.S. and G. Wenzel. 1987. In vitro selection of barley and wheat for resistance against Helminthosporium sativum. Theor Appl Genet. 74: 841–845.CrossRefGoogle Scholar
  28. Conner, A.J. and C.P. Meredith. 1985. Large scale selection of aluminum-resistant mutants from plant cell culture: expression and inheritance in seedlings. Theor Appl Genet. 71: 159–165.Google Scholar
  29. Croughan, S.S., S.S. Quisenberry, M.M. Eichhorn, Jr, P.D. Colyer and T.F. Brown 1994. Registration of Brazos-R3 bermudagrass germplasm. Crop Sci. 34: 542.CrossRefGoogle Scholar
  30. Cullis, C.A. and L. Charlton 1981. The induction of ribosomal DNA changes in flax. Plant Sci Lett. 20: 213–217.CrossRefGoogle Scholar
  31. D’Amato, F. 1985. Cytogenetics of plant cell and tissue cultures and their regenerants. CRC Crit Rev Plant Sci. 3: 73–112.CrossRefGoogle Scholar
  32. Deverno, L.L. 1995. An evaluation of somaclonal variation during somatic embryogenesis. In: Somatic Embryogenesis in Woody Plants, vol. 1, pp. 361–377 (eds S.M. Jain, P.K. Gupta and R.J. Newton). Dordrecht: Kluwer.Google Scholar
  33. Devreux, M. and V. Laneri 1974. Anther culture, haploid plants, isogenic line and breeding approach in Nicotiana tabacum L. In: Polyploidy and Induced Mutation in Plant Breeding, pp. 101–107. Vienna: IAEA.Google Scholar
  34. Dickinson, D.G. and R.F. Baker 1978. Evidence for translocation of DNA sequences during sea urchin embryogenesis. Proc Natl Acad Sci USA. 75: 5627–5630.PubMedCrossRefGoogle Scholar
  35. Dolezel, J., S. Lucretti and F.J. Novak 1987. The influence of 2, 4-dichlorophenoxyacetic acid on cell cycle kinetics and sister-chromatid exchange frequency in garlic (Allium sativum) meristem cells. Biol Plant. 29: 253–257.CrossRefGoogle Scholar
  36. Donn, G., E. Tischler, J. Smith and H. Goodman 1984. Herbicide resistant alfalfa cells: an example of gene amplification in plants. J Mol Appl Genet. 2: 621–635.PubMedGoogle Scholar
  37. Dorffling, K., H. Dorffling and G. Lesselich 1993. In vitro selection and regeneration of hydroxyproline-resistant lines of winter wheat with increased proline content and increased frost tolerance. J Plant Physiol. 142: 222–225.CrossRefGoogle Scholar
  38. Dulieu, H. and M. Barbier 1982. High frequencies of genetic variant plants regenerated from cotyledons of tobacco. In Variability in Plants Regenerated from Tissue Culture, pp. 211–229 (eds L. Earle and Y. Demarly), New York: Praegar.Google Scholar
  39. Duncan, R.R. 1997. Tissue culture-induced variation in crop improvement. Adv Agron. 58: 201–240.CrossRefGoogle Scholar
  40. Duncan, R.R., D.J. Isenhour, R.M. Waskom, R.D. Miller, M.W. Nabors, G.E. Hanning, K.M. Petersen and B.R. Wiseman 1991a. Registration of GATCCP100 and GATCCP101 fall armyworm resistant hegari regenerants. Crop Sci. 31: 242–244.CrossRefGoogle Scholar
  41. Duncan, R.R., R.M. Waskom, D.R. Miller, G.E. Hanning, D.A. Timm and M.W. Nabors. 1992. Registration of GC 103 and GC 104 acid-soil tolerant Tx430 regenerants. Crop Sci. 32: 1076–1077.CrossRefGoogle Scholar
  42. Duncan, R.R., R.M. Waskom, D.R. Miller, R.L. Voigt, G.E. Hanning, D. Timm and M.W. Nabors 1991b. Registration of GAC102: Acid soil tolerant hegari regenerant. Crop Sci. 31: 1396–1397.CrossRefGoogle Scholar
  43. Evans, D.A. 1989. Somaclonal variation — genetic basis and breeding applications. Trends Genet. 5: 46–50.PubMedCrossRefGoogle Scholar
  44. Evans, D.A. and E.F. Paddock 1976. Comparison of somatic crossing over frequency in Nicotiana tabacum and three other crop species. Can J Genet Cytol. 18: 57–65.Google Scholar
  45. Evans, D.A. and W.R. Sharp. 1983. Single gene mutations in tomato plants regenerated from tissue culture. Science. 221: 949–951.PubMedCrossRefGoogle Scholar
  46. Evans, D.A. and W.R. Sharp. 1986. Applications of somaclonal variation. Bio/Technology 4: 528–532.CrossRefGoogle Scholar
  47. Evans, D.A., W.R. Sharp and A.P. Medina-Filho 1984. Somaclonal and gametoclonal variation. Am J Bot. 71: 759–774.CrossRefGoogle Scholar
  48. Fourre, J-L., P. Berger, L. Niquet and P. Andre 1997. Somatic embryogenesis and somaclonal variation in Norway spruce: morphogenetic and molecular approaches. Theor Appl Genet. 94: 159–169.CrossRefGoogle Scholar
  49. Gengenbach, B.G., C.E. Green and C.M. Donovan 1977. Inheritance of selected pathotoxin resistance in maize plants regenerated from callus culture. Proc Natl Acad Sci USA. 74: 5113–5117.PubMedCrossRefGoogle Scholar
  50. George, L. and P.S. Rao 1983. Yellow seeded variants in in vitro regenerants of mustard (Brassica juncea coss var RAI-5). Plant Sci Lett. 30: 327–330.CrossRefGoogle Scholar
  51. Gonzalez, A.I., M.I. Pelaez and M.L. Ruiz 1996. Cytogenetic variation in somatic tissue cultures and regenerated plants of barley (Hordeum vulgare L.). Euphytica. 91: 37–43.CrossRefGoogle Scholar
  52. Gould, A.R. 1984. Control of the cell cycle in cultured plant cells. CRC Crit Rev Plant Sci. 1: 315–344.CrossRefGoogle Scholar
  53. Grant, W.F. and R.B. McDougall 1995. Registration of H401–4-4–2 birdsfoot trefoil germplasm resistant to sulfonylurea. Crop Sci. 35: 286–287.CrossRefGoogle Scholar
  54. Hartman, C.L., T.J. McCoy and T.R. Knous 1984. Selection of alfalfa (Medicago sativa) cell lines and regeneration of plants resistant to the toxin(s) produced by Fusarium oxysporum f. sp. medicaginis. Plant Sci Lett. 34: 183–194.CrossRefGoogle Scholar
  55. Heath-Pagliuso, S., J. Pullman and L. Rappaport 1989. UC-T3 somaclone: celery germplasm resistant to Fusarium oxysporum race 2. HortScience. 24: 711–712.Google Scholar
  56. Heinz, D.J., M. Krishnimurthi, L.G. Nickell and A. Maretzki 1977. Cell, tissue and organ culture in sugarcane improvement. In: Applied and Fundamental Aspects of Plant Cell, Tissue and Organ Culture, pp. 1–17 (eds J. Reinert and Y.P.S. Bajaj). Berlin: Springer-Verlag.Google Scholar
  57. Heinze, B. and J. Schmidt 1995. Monitoring genetic fidelity vs. somaclonal variation in Norway spruce (Picea abies) somatic embryogenesis by RAPD analysis. Euphytica. 85: 341–345.CrossRefGoogle Scholar
  58. Heszky, L.E. and I. Simon-Kiss 1992. DAMA, the first plant variety of biotechnology origin in Hungary, registered in 1992. Hungarian Agric Res. 1: 30–32.Google Scholar
  59. Holliday, R. 1990. DNA methylation and epigenetic inheritance. Phil Trans R Soc London B. 326: 329–338.CrossRefGoogle Scholar
  60. Isabel, N., L. Tremblay, M. Michaud, F.M. Tremblay and J. Bousquet 1993. RAPDs as an aid to evaluate the genetic integrity of somatic embryogenesis-derived populations of Picea mariana (Mill). BSP Theor Appl Genet. 86: 81–87.Google Scholar
  61. Jain, S.M. 1993a. Somaclonal variation in Begonia x elatoir and Saintpaulia ionantha L. Sci Hort. 54: 221–231.CrossRefGoogle Scholar
  62. Jain, S.M. 1993b. Growth hormonal influence on somaclonal variation in ornamental plants. In: Creating Genetic Variation in Ornamentals, pp. 93–103 (eds T. Schiva and A. Mercuri). Sanremo: Instituto Sperimentale per la Floricoltura.Google Scholar
  63. Jain, S.M. 1997a. Somaclonal variation and mutagenesis for crop improvement. In: Maatalouden Tutkimuskeskuksen Julkaisuja, vol. 18 (ed. S. Immomen).Google Scholar
  64. Jain, S.M. 1997b. Biotechnology of industrially important tree species in developing countries. In: Plant Biotechnology and Plant Genetic Resources for sustainability and productivity, pp. 227–238 (eds K. Watahnabe and E. Pehu) New York: Academic Press.Google Scholar
  65. Jain, S.M., P.K. Gupta and R.J. Newton (eds) 1995. Somatic Embryogenesis in Woody Plants, vols 1–3. Dordrecht: Kluwer.Google Scholar
  66. Jain, S.M. and R.J. Newton. 1988. Proto-variation in protoplast derived Brassica napus plants. In: Progress in Plant Protoplast Research, pp. 403–404 (eds K.J. Puite, J.J.M. Dons, H.J. Huizing, A.J. Kool, M. Koornneff and F.A. Krens). Dordrecht: Kluwer.CrossRefGoogle Scholar
  67. Jain, S.M. and R.J. Newton 1989. Evaluation of protoclonal variation versus chemically induced mutagenesis in Brassica napus. Curr Sci. 58: 176–180.Google Scholar
  68. Jain, S.M., F. Saccardo, E. Rugini and A. Grassotti 1997a. Biotechnology and agronomical aspects of gerbera improvement. Advances in Hort. Sci. (In press).Google Scholar
  69. Jain, S.M., M. Buiatti, F. Gimelli and F. Saccardo 1997b. Somaclonal variation in improving ornamental plants. In: Somaclonal Variation and Induced Mutations in Crop Improvement, (eds S.M. Jain, D.S. Brar and B.S. Ahloowalia), Dordrecht: Kluwer (in press).Google Scholar
  70. Kaeppler, S.M. and R.L. Phillips 1993a. Tissue culture-induced DNA methylation variation in maize. Proc Natl Acad Sci USA. 90: 8773–8776.PubMedCrossRefGoogle Scholar
  71. Kaeppler, S.M. and R.L. Phillips 1993b. DNA methylation and tissue culture-induced variation in plants. In Vitro Cell Dev Biol. 29: 125–130.Google Scholar
  72. Karp, A. 1995. Somaclonal variation as a tool for crop improvement. Euphytica. 85: 295–302.CrossRefGoogle Scholar
  73. Kawata, M., A. Ohimiya, Y. Shimamoto, K. Oone and F. Takaiwa 1995. Structural changes in the plastid DNA of rice (Oryza sativa L.) during tissue culture. Theor Appl Genet. 90: 364–371.CrossRefGoogle Scholar
  74. Kemble, R.J. and J.F. Shepard 1984. Cytoplasmic DNA variation in a potato protoclonal population. Theor Appl Genet. 69: 211–216.Google Scholar
  75. Khalid, N., M.R. Davey and J.B. Power 1989. An assessment of somaclonal variation in Chrysanthemum morifolium: the generation of plants of commercial value. Sci Hort. 38: 287–294.CrossRefGoogle Scholar
  76. Kirti, P.B., S. Hadi, P.A. Kumar and V.L. Chopra 1991. Production of sodium chloride tolerant Brassica juncea plants by in vitro selection at the somatic embryo level. Theor Appl Genet. 83: 233–237.CrossRefGoogle Scholar
  77. Krishnamurthi, M. and J. Tlaskal 1974. Fiji disease resistant Saccharum officinarum var Pindar subclones from tissue cultures. Proc Int Soc Sugar Cane Technol. 15: 130–137.Google Scholar
  78. Landsmann, J. and H. Uhrig 1985. Somaclonal variation in Solanum tuberosum detected at the molecular level. Theor Appl Genet. 71: 500–505.CrossRefGoogle Scholar
  79. Lapitan, N.I.V., R.G. Sears and B.S. Gill 1984. Translocations and other karyotypic structural changes in wheat x rye hybrids regenerated from tissue culture. Theor Appl Genet. 68: 547–554.CrossRefGoogle Scholar
  80. Lapitan, N.L.V., R.G. Sears and B.S. Gill 1988. Amplification of repeated DNA sequences in wheat x rye hybrids regenerated from tissue culture. Theor Appl Genet. 75: 381–388.CrossRefGoogle Scholar
  81. Larkin, P.J. and W.R. Scowcroft 1981. Somaclonal variation — a novel source of variability from cell cultures for plant improvement. Theor Appl Genet. 60: 197–214.CrossRefGoogle Scholar
  82. Larkin, P.J. and W.R. Scowcroft 1983. Somaclonal variation and eyespot toxin tolerance in sugarcane. Plant Cell Tissue Organ Cult. 2: 111–122.CrossRefGoogle Scholar
  83. Larkin, P.J., S.A. Ryan, R.I.S. Brettell and W.R. Scowcroft 1984. Heritable somaclonal variation in wheat. Theor Appl Genet. 67: 443–455.CrossRefGoogle Scholar
  84. Larkin, P.J., P.M. Banks, R.I.S. Brettell, P.A. Davies, S.A. Ryan, W.R. Scowcroft, L.H. Spindler and G.J. Tanner 1989. From somatic variation to variant plants: mechanisms and applications. Genome. 31: 705–711.CrossRefGoogle Scholar
  85. Lee, M. and R.L. Phillips 1988. The chromosomal basis of somaclonal variation. Annu Rev Plant Physiol Plant Mol Biol. 39: 413–437.CrossRefGoogle Scholar
  86. Levings, C.S. III, B.D. Kim, D.R. Pring, M.F. Conde, R.J. Mans, J.R. Laughnan and S.J. Gabay-Laughran 1980. Cytoplasmic reversion of cms-S in maize: association with a transpositional event. Science. 209: 1021.PubMedCrossRefGoogle Scholar
  87. Ling, D.H., P. Vidhyaseharan, E.S. Borromeo, F.J. Zapata and T.W. Mew 1985. In vitro screening of rice germplasm for resistance to brown spot disease using phytotoxin. Theor Appl Genet. 71: 133–135.CrossRefGoogle Scholar
  88. Lo Schiavo, F., L. Pitto, G. Giuliano, G. Torti, V. Nuti-Ronchi, D. Marazziti, R. Vergara, S. Orselli and M. Terzi 1989. DNA methylation of embryogenic carrot cell cultures and its variation as caused by mutation, differentiation, hormones and hypomethylating drugs. Theor Appl Genet. 77: 325–331.CrossRefGoogle Scholar
  89. Martelli, G., I. Greco, B. Mezzetti and P. Rosati 1993. Isozymic analysis of somaclonal variation among regenerants from apple root stock leaf tissue. Acta Hort. 336: 381–387.Google Scholar
  90. Matern, U., G. Strobel and J. Shepard 1978. Reaction to phyto-toxins in a potato population derived from mesophyll protoplasts. Proc Natl Acad Sci USA. 75: 4935–4939.PubMedCrossRefGoogle Scholar
  91. McClintock, B. 1950. The origin and behavior of mutable loci in maize. Proc Natl Acad Sci USA. 36: 344–355.PubMedCrossRefGoogle Scholar
  92. McClintock, B. 1984. The significance of responses of the genome to challenge. Science. 226: 792–800.PubMedCrossRefGoogle Scholar
  93. McCoy, T.J., R.L. Phillips and H.W. Rines 1982. Cytogenetic analysis of plants regenerated from oats (Avena sativa) tissue cultures: high frequency of partial chromosome loss. Can J Genet Cytol. 24: 37–50.Google Scholar
  94. Molgaard, H.V. 1980. Assembly of immunoglobulin heavy chain genes. Nature. 286: 657–659.PubMedCrossRefGoogle Scholar
  95. Morrison, R.A. and D.A. Evans 1987. Gametoclonal variation. Plant Breed Rev. 5: 359–391.Google Scholar
  96. Moyer, J.W. and W.W. Collins 1983. ‘Scarlet’ sweet potato. HortScience. 18: 111–112.Google Scholar
  97. Muller, E., T.P.H. Brown, S. Hartke and H. Lorz 1990. DNA variation in tissue culture-derived rice plants. Theor Appl Genet. 80: 673–679.CrossRefGoogle Scholar
  98. Nehra, S.N., R.N. Chibber, K.K. Kartha, R.S.S. Datla, W.L. Crosby and C. Stushnoff 1990. Genetic transformation of strawberry by Agrobacterium tumefaciens using a leaf disk regeneration system. Plant Cell Rept. 9: 293–298.Google Scholar
  99. Ogura, H. and K. Shimamoto 1991. Field performance of protoplasts derived rice plants and the release of a new variety. In: Biotechnology in Agriculture and Forestry, Vol. 14, pp. 269–282 (ed. Y.P.S. Bajaj). Berlin: Springer-Verlag.Google Scholar
  100. Oono, K. 1978. Test tube breeding of rice by tissue culture. Trop Agric Res Series, Ministry Agric Forest (Japan). 11: 109–124.Google Scholar
  101. Orton, T.J. 1980a. Chromosomal variability in tissue cultures and regenerated plants of Hordeum. Theor Appl Genet. 56: 101–112.CrossRefGoogle Scholar
  102. Orton, T.J., 1980b. Haploid barley regenerated from callus cultures of Hordeum vulgare x H. jubatum. J. Hered 71: 780–782.Google Scholar
  103. Peerbolte, R., P. Ruigrok, G. Wullems and R. Schilperoort 1987. T-DNA rearrangements due to tissue culture: somaclonal variation in crown gall tissues. Plant Mol Biol. 9: 51–57.CrossRefGoogle Scholar
  104. Peschke, V.M. and R.L. Phillips 1991. Activation of the maize transposable element suppressormutator (Spm) in tissue culture. Theor Appl Genet. 81: 90–97.CrossRefGoogle Scholar
  105. Peschke, V.M., R.L. Phillips and B.G. Genggenbach 1987. Discovery of transposable element activity among progeny of tissue culture-derived plants. Science. 238: 804–807.PubMedCrossRefGoogle Scholar
  106. Phillips, R.L., S.M. Kaeppler and P. Olhoft 1994. Genetic instability of plant tissue cultures: breakdown of normal controls. Proc Natl Acad Sci USA. 91: 5222–5226.PubMedCrossRefGoogle Scholar
  107. Phillips, R.L., S.M. Kaeppler and V.M. Peschke 1990. Do we understand somaclonal variation? Proceedings, 7th International Congress on Plant Tissue and Cell Culture, pp. 131–141. Amsterdam.Google Scholar
  108. Ramos Leal, R., R.H. Maribona, A. Ruiz, S. Korneva et al. 1996. Somaclonal variation as source of resistance to eyespot disease of sugarcane. Plant Breed. 115: 3–42.Google Scholar
  109. Reed, S.M. and E.A. Wersmann 1989. DNA amplification among anther-derived doubled haploid lines of tobacco and its relationship to agronomic performance. Crop Sci. 29: 1072–1076.CrossRefGoogle Scholar
  110. Roeder, G.S. and G.R. Fink 1980. DNA rearrangements associated with a transposable element in yeast. Cell. 21: 239–249.PubMedCrossRefGoogle Scholar
  111. Rufty, R.C., E.A. Wernsman, C.E. Main and G.V. Gooding, Jr 1990. Registration of NC-BMR 42 and NC-BMR 90 germplasm lines of tobacco. Crop Sci. 30: 241–242.CrossRefGoogle Scholar
  112. Sabir, A., H.J. Newbury, G. Todd, J. Catty, and B.V. Ford-Lloyd 1992. Determination of genetic stability using isozymes and RFLPs in beet plants regenerated in vitro.Theor Appl Genet. 84: 113–117.CrossRefGoogle Scholar
  113. Sacristan, M.D. 1982. Resistance responses to Phoma lingam of plants regenerated from selected cell and embryogenic cultures of haploid Brassica napus. Theor Appl Genet. 61: 193–200.Google Scholar
  114. Sears, R.G., T.S. Cox and G.M. Paulsen 1992. Registration of KS89WGRC9 stress-tolerant hard red winter wheat germplasm. Crop Sci. 32: 507.CrossRefGoogle Scholar
  115. Semal, J. (ed.) 1986. Somaclonal Variations and Crop Improvement. Boston, MA: Martinus Nijhoff.Google Scholar
  116. Shahin, E. and R. Spivey. 1987. A single dominant gene for Fusarium wilt resistance in protoplastderived tomato plants. Theor Appl Genet. 73: 164–169.CrossRefGoogle Scholar
  117. Sharpe, F.T. and G.W. Schaeffer 1993. Distribution of amino acids in bran, embryo and milled endosperm and shifts in storage protein subunits of in vitro-selected and lysine-enhanced mutant and wild type rice. Plant Sci. 90: 145–154.CrossRefGoogle Scholar
  118. Shenoy, V.B. and I.K. Vasil 1992. Biochemical and molecular analysis of plants derived from embryogenic tissue cultures of napier grass (Pennisetum purpureum K. Schum). Theor Appl Genet. 83: 947–955.CrossRefGoogle Scholar
  119. Shepard, J.F., D. Bidney and E. Shahin 1980. Potato protoplasts in crop improvement. Science. 208: 17–24.PubMedCrossRefGoogle Scholar
  120. Silvy, A. and Y. Mitteau 1986. Diversification des varietes d’oeillet (Dianthus caryophyllus L.) par traiment mutagene. In: Proceedings, International Symposium on Nuclear Techniques and in vitro Culture for Plant Improvement, pp. 385–407. Vienna: IAEA.Google Scholar
  121. Skirvin, R.M. and J. Janick 1976. Tissue culture-induced variation in scented Pelargonium spp. J Am Soc Hort Sci. 101: 281–340.Google Scholar
  122. Smith, R.R. and K.H. Quesenberry 1995. Registration of NEWRC redclover germplasm. Crop Sci. 35: 295.CrossRefGoogle Scholar
  123. Smulderms, M.J.M., W. Rus-Kortekaas and B. Vosman 1995. Tissue culture-induced DNA methylation polymorphisms in repetitive DNA of tomato calli and regenerated plants. Theor Appl Genet. 91: 1257–1264.Google Scholar
  124. Taylor, P.W.J., J.R. Geijskes, H.L. Ko, T.A. Fraser, T.J. Henry and R.G. Birch 1995. Sensitivity of random amplified polymorphic DNA analysis to detect genetic change in sugarcane during tissue culture. Theor Appl Genet. 90: 1169–1173.CrossRefGoogle Scholar
  125. Thanutong, P., I. Furusawa and M. Yamamoto 1983. Resistant tobacco plants from protoplast-derived calluses selected for their resistance to Pseudomonas and Alternaria toxins. Theor Appl Genet. 66: 209–215.CrossRefGoogle Scholar
  126. Williams, M.E., A.G. Hepburn and J.M. Widholm 1991. Somaclonal variation in a maize inbred line is not associated with changes in the number or location of Ac-homologous sequences. Theor Appl Genet. 81: 272–276.CrossRefGoogle Scholar
  127. Winicov, I. 1996. Characterization of rice (Oryza sativa L.) plants regenerated from salt-tolerant cell lines. Plant Sci. 13: 105–111.CrossRefGoogle Scholar
  128. Wise, R.P., D.R. Pring and B.G. Gengenbach 1987. Mutation to male fertility and toxin insensitivity in Texas (T) cytoplasm maize is associated with a frameshift in a mitochondrial open reading frame. Proc Natl Acad Sci USA. 84: 2858–2862.PubMedCrossRefGoogle Scholar
  129. Yadav, V.K. and S.L. Mehta 1995. Lathyrus sativus: a future pulse crop free of neurotoxin. Curr Sci. 68: 288–292.Google Scholar
  130. Zehr, B.E., M.E. Williams, R.D. Duncan and J.M. Widholm 1987. Somaclonal variation among the progeny of plants regenerated from callus cultures of seven inbred lines of maize. Can J Bot. 65: 491–499.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • D. S. Brar
    • 1
  • S. M. Jain
    • 2
  1. 1.International Rice Research InstituteManilaPhilippines
  2. 2.Department of Plant ProductionUniversity of HelsinskiHelsinkiFinland

Personalised recommendations