Somaclonal Variation in Crop Improvement

  • S. M. Jain
  • B. S. Ahloowalia
  • R. E. Veilleux


Deterioration of the environment is increasing the levels of abiotic and biotic stress on plant growth. Further expansion of cultivated land has reached a limit. Rapid industrialization and increase in population are causing environmental changes such as depletion of the atmospheric ozone layer, acid rain, erratic weather, insect and pest problems, diseases, global warming, and increase in the ultraviolet-B (UV-B) radiation level. The adverse environmental impact is gradually leading to reduction in crop production and poses a serious threat to sustained food production. Plant breeders are faced with the challenge to enhance food production for the ever-increasing human population despite the deteriorating environment. So far, conventional plant breeding and crop management practices have enhanced crop production. New approaches and tools are now available to assist plant breeders to improve crops. Plant biotechnology offers new possibilities to sustain agricultural production by offering new opportunities for creating and utilizing genetic variation.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ahloowalia, B.S. 1976. Chromosomal changes in parasexually produced ryegrass. In: Current Chromosome Research, pp. 115–122 (eds K. Jones and P. Brandham). Amsterdam: Elsevier.Google Scholar
  2. Ahloowalia, B.S. 1986. Limitations to the use of somaclonal variation in crop improvement. In: Somaclonal Variation and Crop Improvement, Advances in Agricultural Biotechnonogy, pp. 14–27 (ed. J. Semal). Dordrecht: Martinus Nijhoff.Google Scholar
  3. Ahloowalia, B.S. and J. Sherington. 1985. Transmission of somaclonal variation in wheat. Euphytica 34: 525–537.CrossRefGoogle Scholar
  4. Alicchio, R. 1990. Somaclonal variation in eggplant (Solanum melongena L.). In: Somaclonal Variation in Crop Improvement. I: Biotechnology in Agriculture and Forestry, pp. 416–434 (ed. Y.P.S. Bajaj). Berlin: Springer-Verlag.Google Scholar
  5. Alicchio, R., C. Antonioli and D. Palenzona. 1984. Karyotypic variability in plants of Solanum melongena regenerated from callus grown in presence of culture of filtrate of Verticillium dahliae. Theor Appl Genet. 67: 267–271.CrossRefGoogle Scholar
  6. Annual Report. 1996. International Atomic Energy Agency, Vienna, Austria.Google Scholar
  7. Banerjee, M.K. and Kalloo, 1989. Role of phenols in resistance to tomato leaf curl virus, Fusarium wilt and fruit borer in Lycopersicon. Curr Sci. 58: 575–576.Google Scholar
  8. Barden, K., A. Schiller, S. Smith and H. Murakishi. 1986. Regeneration and screening of tomato somaclones for resistance to tobacco mosaic virus. Plant Sci. 45: 209–213.CrossRefGoogle Scholar
  9. Bebeli, P.J., P.J. Kaltsikes and A. Karp. 1993. Field evaluation of somaclonal variation in rye lines differing in telomeric heterochromatin. J Genet Breed. 47: 15–22.Google Scholar
  10. Behl, R.K., H.S. Nainawatee, and K.P. Singh. 1983. High temperature tolerance in wheat. In: International Crop Science 1. Crop Science Society of America, Madison, Wisconsin p. 349–555.Google Scholar
  11. Buiatti, M. and F. Gimelli. 1993. Somaclonal variation in ornamentals. In: Creating Genetic Variation in Ornamentals, pp. 5–24 (eds T. Schiva and A. Mercuri). Sanremo: Istituto Sperimentale per la Floricoltura.Google Scholar
  12. Buiatti, M. and R. Morpurgo. 1990. Somaclonal variation in tomato. In: Somaclonal Variation in Crop Improvement I: Biotechnology in Agriculture and Forestry, 11 pp. 400–415 (ed. Y.P.S. Bajaj). Berlin: Springer-Verlag.Google Scholar
  13. Burg, H.C.J., K. Sree Ramulu, G.M.M. Bredemeijer, S. Roest, P. Dijkhuis, J.J. van Hoogen and A. Houwing. 1989. Patterns of phenotypic and tuber protein variation in plants derived from protoplasts of potato (Solanum tuberosum L. cv. Bintje). Plant Sci. 64: 113–124.CrossRefGoogle Scholar
  14. Burgutin, A.B., S.M. Musin and R.G. Butenko. 1994. Segregation of biochemical genetic determinants in somaclonal variants of the potato interspecific somatic hybrid. Russ J Plant Physiol. 41:739–747.Google Scholar
  15. Carlberg, I., K. Glimelius and T. Eriksson. 1984. Nuclear DNA-content during the initiation of callus formation from isolated protoplasts of Solanum tuberosum L. Plant Sci Lett. 35: 225–230.CrossRefGoogle Scholar
  16. Cheng, X.Y., M.W. Gao, Z.Q. Liang and K.Z. Liu. 1990. Effect of mutagenic treatments on somaclonal variation in wheat (Triticum aestivum L.). Plant Breed. 105: 47–52.CrossRefGoogle Scholar
  17. Compton, M.E. and R.E. Veilleux. 1991. Variation for genetic recombination among tomato plants regenerated from three tissue culture systems. Genome. 34: 810–817.CrossRefGoogle Scholar
  18. Creissen, G.P. and A. Karp. 1985. Karyotypic changes in potato plants regenerated from protoplasts. Plant Cell Tissue Org Cult. 4: 171–182.CrossRefGoogle Scholar
  19. Crino, P., A. Lai, R.D. Bonito and P. Veronese. 1994. Genetic variability in tomato plants regenerated from irradiated cotyledons. JGenet Breed. 48: 281–290.Google Scholar
  20. Deverno, L.L. 1995. An evaluation of somaclonal variation during somatic embryogenesis. In: Somatic Embryogenesis in Woody Plants, Vol. 1, pp. 361–377 (eds S.M. Jain, P.K. Gupta and R.J. Newton). Dordrecht: Kluwer.Google Scholar
  21. Evans, D.A. and W.R. Sharp. 1983. Single gene mutations in tomato plants regenerated from tissue culture. Science. 221: 949–951.PubMedCrossRefGoogle Scholar
  22. Fourre, J.L., P. Berger, L. Noquet and P. Andre. 1997. Somatic embryogenesis and somaclonal variation in Norway spruce: morphogenetic, cytogenetic and molecular approaches. Theor Appl Genet. 94:159–169.CrossRefGoogle Scholar
  23. Gavazzi, G., C. Tonelli, G. Todesco, E. Arreghini, F. Raffaldi, F. Vecchio, G. Barbuzzi, M.G. Biasini and F. Sala. 1987. Somaclonal variation versus chemically induced mutagenesis in tomato (Lycopersicon esculentum L.). Theor Appl Genet. 74: 733–738.CrossRefGoogle Scholar
  24. Gonzalez, A.I., M.I. Pelaez and M.L. Ruiz. 1996. Cytogenetic variation in somatic tissue cultures and regenerated plants of barley (Hordeum vulgare L.). Euphytica. 91: 37–43.CrossRefGoogle Scholar
  25. Hammerschlag, F.A. 1992. Somaclonal variation. In: Biotechnology of Perennial Fruit Crops. pp. 35–55 (eds F.A. Hammerschlag and R.E. Litz). Wellingford: C.A.B. International.Google Scholar
  26. Haque, N.S., N.W. Fish and M. Kiel. 1992. Assessment of somaclonal variation in Eucalyptus using random amplified polymorphic DNA markers. Proceedings, Fifth Workshop, IUFRO WK. Party S2.04.06. Carcans-Maubisson, 15–18 June, 1992. INRA, France.Google Scholar
  27. Heinze, B. and J. Schmidt. 1995. Monitoring genetic fidelity vs somaclonal variation in Norway spruce (Picea abies) somatic embryogenesis by RAPD analysis. Euphytica. 85: 341–345.CrossRefGoogle Scholar
  28. Infante, R., S. Gonelli, P. Rosati and M. Mazzara. 1996. Long-term cell suspension culture and regeneration of the single-leafed strawberry Fragaria vesca monophylla. J Sci Food Agric. 72: 196–200.CrossRefGoogle Scholar
  29. Isabel, N., L. Tremblay, M. Michaud, F.M. Tremblay and J. Bousquet. 1993. RAPDs as an aid to evaluate the genetic integrity of somatic embryogenesis-derived populations of Picea mariana (Mill.) BSP. Theor Appl Genet. 86: 81–87.Google Scholar
  30. Jain, S.M. 1993a. Somaclonal variation in Begonia x elatior and Saintpaulia ionantha L. Sci Hort. 54:221–231.CrossRefGoogle Scholar
  31. Jain, S.M. 1993b. Growth hormonal influence on somaclonal variation in ornamental plants. In: Creating Genetic Variation in Ornamentals, pp. 93–103 (eds T. Schiva and A. Mercuri). Sanremo: Istituto Sperimentale per la Floricoltura.Google Scholar
  32. Jain, S. M. 1997a. Somaclonal variation and mutagenesis for crop improvement. In: Maatalouden tutkimuskeskuksen julkaisuja, Vol. 18, pp. 122–133 (ed. S. Immonen).Google Scholar
  33. Jain, S. M. 1997b. Creation of variability by mutation and tissue culture in improving plants. Acta Hort. (In press).Google Scholar
  34. Jain, S.M. 1997c. Micropropagation of selected somaclones of Begonia and Saintpaulia. J. Biosci. 22: 1–8.Google Scholar
  35. Jain, S.M. and R.J. Newton. 1988. Proto-variation in protoplast derived Brassica napus plants. In: Progress in Plant Protoplast Research, Current Plant Science and Biotechnology in Agriculture, vol. 7, pp. 403–404 (eds K.J. Puite, Puite, K.J. J.J.M. Dons, H.J. Huizing, A.J. Kool, M. Koornneef and F.A. Krens) Kluwer.Google Scholar
  36. Jain, S.M. and R.J. Newton. 1989. Evaluation of protoclonal variation versus chemically induced mutagenesis in Brassica napus. Curr Sci. 58: 176–180.Google Scholar
  37. Jain, S.M., P.K. Gupta and R.J. Newton (eds). 1995. Somatic Embryogenesis in Woody Plants, vols 1–3. Dordrecht: Kluwer.Google Scholar
  38. Jain, S.M., D.S. Brar and B.S. Ahloowalia (eds). 1997a. Somaclonal Variation and Induced Mutations in Crop Improvement. Dordrecht: Kluwer. (This volume).Google Scholar
  39. Jain, S.M., F. Saccardo, E. Rugini and A. Grassotti. 1997b. Biotechnology and agronomical aspects in gerbera improvement. (In press).Google Scholar
  40. Karp, A., 1990. Somaclonal variation in potato. In: Somaclonal Variation in Crop Improvement I: Biotechnology in Agriculture and Forestry, 11, pp. 379–399 (ed. Y.P.S. Bajaj). Berlin: Springer-Verlag.Google Scholar
  41. Khalid, N., M.R. Davey and J.B. Power. 1989. An assessment of somaclonal variation in Chrysanthemum morifolium: the generation of plants of commercial value. Sci Hort. 38: 287–294.CrossRefGoogle Scholar
  42. Landsmann, J. and H. Uhrig. 1985. Somaclonal variation in Solanum tuberosum detected at the molecular level. Theor Appl Genet. 71: 500–505.CrossRefGoogle Scholar
  43. Larkin, P.J. and W.R. Scowcroft. 1981. Somaclonal variation - a novel source of variability from cell cultures for plant improvement. Theor Appl Genet. 60: 197–214.CrossRefGoogle Scholar
  44. Lentini, Z., E.D. Earle, and R.L. Plaisted. 1990. Insect-resistant plants with improved horticultural traits from interspecific potato hybrids grown in vitro. Theor Appl Genet. 80: 95–104.Google Scholar
  45. Lindeque, J.M., A. Vandermescht, M.M. Slabbert and G. Henn. 1991. Variation in phenotype and proteins in plants regenerated from cell suspensions of potato cv. BP1. Euphytica. 54: 41–44.CrossRefGoogle Scholar
  46. Maddock, S.E. 1986. Somaclonal variation in wheat. In: Somaclonal Variation and Crop Improvement, pp. 127–137 (ed. J. Semal) Dordrecht: Martinus Nijhoff.Google Scholar
  47. Maluszynski, M., B.S. Ahloowalia and B. Sigurbjönsson. 1995. Application of in vivo and in vitro mu-tation techniques for crop improvement. Euphytica. 85: 303–315.CrossRefGoogle Scholar
  48. Martelli, G., I. Greco, B. Mezzetti and P. Rosati. 1993. Isozymic analysis of somaclonal variation among regenerants from apple rootstock leaf tissue. Acta Hort. 336: 381–387.Google Scholar
  49. Merkle, S.A., P.L. Chou and H.E. Sommer. 1988. Stability of highly repeated sequences in the DNA of embryogenic cultures of yellow poplar. In: Molecular Genetics of Forest Trees, pp. 85–88. (eds M.M. Cheliak and A.C. Yapa) Petawawa Natl. Forestry Inst. Inform. Rept. PI-X-80.Google Scholar
  50. Micke, A., B. Donini and M. Maluszynski. 1990. Induced mutations for crop improvement. Mutation Breed Rev, Vienna: FAO/IAEA, No. 7, pp. 1–41.Google Scholar
  51. Montagno, T.J., R.D. Lineberger and S.Z. Berry. 1989. Somaclonal and radiation induced variation in Lycopersicon esculentum. Environ Exp Bot. 29: 401–408.CrossRefGoogle Scholar
  52. Morgan, A. and E.C. Cocking. 1982. Plant regeneration from protoplasts of Lycopersicon esculentumMill. Z Pflanzenphysiol. 106:97–104.Google Scholar
  53. Nagata, T. and I. Takebe. 1971. Plating of isolated tobacco mesophyll protoplasts on agar medium. Planta. 99: 12–20.CrossRefGoogle Scholar
  54. Neale, D.B., M.E. Devey, K.D. Jermstad, M.R. Ahuja, M.C. Alosi and K.A. Marshall. 1992. Use of DNA markers in forest tree improvement research. New Forests. 6: 391–407.CrossRefGoogle Scholar
  55. Nehra, S.N., R.N. Chibbar, K.K. Kartha, R.S.S. Datla, W.I. Crosby and C. Stushnoff. 1990. Genetic transformation of strawberry by Agrobacterium tumefaciens using a leaf disk regeneration system. Plant Cell Rep. 9: 293–298.Google Scholar
  56. Niedz, R.P., S.M. Rutter, L.W. Handley and K.C. Sink. 1985. Plant regeneration from leaf protoplasts of six tomato cultivars. Plant Sci. 39: 199–204.CrossRefGoogle Scholar
  57. Owen, H.R., R.E. Veilleux, D. Levy and D.L. Ochs. 1988. Environmental, genotypic, and ploidy effects on endopolyploidization within a genotype of Solanum phureja and its derivatives. Genome. 30:506–510.Google Scholar
  58. Pijnacker, L.P. and K. Sree Ramulu. 1990. Somaclonal variation in potato: a karyotypic evaluation. Acta Bot Neerl. 39: 163–169.Google Scholar
  59. Potter, R. and M.G.K. Jones. 1991. An assessment of genetic stability of potato in vitro by molecular and phenotypic analysis. Plant Sci. 76: 239–248.CrossRefGoogle Scholar
  60. Prat, D., R. de Paepe and X.Q. Li. 1990. Somaclonal variation in Nicotiana sylvestris. In: Somaclonal Variation in Crop Improvement, I: Biotechnology in Agriculture and Forestry, 11, pp. 624–653 (ed. Y.P.S. Bajaj). Berlin: Springer-Verlag.Google Scholar
  61. Rani, V., A. Parida and S.N. Raina. 1995. Random amplified polymorphic DNA (RAPD) markers for genetic analysis in micropropagated plants of Populus deltoides Marsh. Plant Cell Rep. 14: 459–462.CrossRefGoogle Scholar
  62. Rao, P.S., V.A. Bapat and M. Mhatre. 1984. Regulatory factors for in vitro multiplication of sandalwood tree (Santalum album Linn.) II. Plant regeneration in nodal and internodal stem expiants and occurrence of somaclonal variations in tissue culture raised plants. Proc Indian Natl Acad Sci. 50: 196–202.Google Scholar
  63. Remotti, P.C. 1998. Somaclonal variation and in vitro selection for crop improvement. In: Somaclonal Variation and Induced Mutations in Crop Improvement (eds S.M. Jain, Jain D.S. Brar and B.S. Ahloowalia. Dordrecht: Kluwer. (This volume).Google Scholar
  64. Rietveld, R.C., P.M. Hasegawa and R.A. Bressan. 1991. Somaclonal variation in tuber disc-derived populations of potato. I. Evidence of genetic stability across tuber generations and diverse locations. Theor Appl Genet. 82: 430–440.CrossRefGoogle Scholar
  65. Rus-Kortekaas, W., M.J.M. Smulders, P. Arens and B. Vosman. 1994. Direct comparison of levels of genetic variation in tomato detected by a GACA-containing microsatellite probe and by random amplified polymorphic DNA. Genome. 37: 375–381.PubMedCrossRefGoogle Scholar
  66. Sabir, A., H.J. Newbury, G. Todd, J. Catty and B.V. Ford-Lloyd. 1992. Determination of genetic stability using isozymes and RFLPs in beet plants regenerated in vitro. Theor Appl Genet. 84:113–117.Google Scholar
  67. Sadanandam, A. 1991. Induced synaptic mutant from mesophyll cell protoclones of dihaploid Solanum tuberosum. J Plant Physiol. 138: 107–110.CrossRefGoogle Scholar
  68. Sebastiani, L., A. Lenzi, C. Pugliesi and M. Fambrini. 1994. Somaclonal variation for resistance to Verticillium dahliae in potato (Solanum tuberosum L.) plants regenerated from callus. Euphytica. 80:5–11.CrossRefGoogle Scholar
  69. Secor, G.A. and J.F. Shepard. 1981. Variability of protoplast-derived potato clones. Crop Sci. 21: 102–105.CrossRefGoogle Scholar
  70. Shenoy, V.B. and I.K. Vasil. 1992. Biochemical and molecular analysis of plants derived from embryogenic tissue cultures of napier grass (Pennisetum purpureum K. Schum). Theor Appl Genet. 83: 947–955.CrossRefGoogle Scholar
  71. Shepard, J.F. 1981. Protoplasts as sources of disease resistance in plants. Annu Rev Phytopathol. 19:145–166.CrossRefGoogle Scholar
  72. Shepard, J.F. and R.E. Totten. 1977. Mesophyll cell protoplasts of potato. Isolation, proliferation and plant regeneration. Plant Physiol. 60: 313–316.PubMedCrossRefGoogle Scholar
  73. Shepard, J.F., D. Bidney and E. Shahin. 1980. Potato protoplasts in crop improvement. Science. 208: 17–24.PubMedCrossRefGoogle Scholar
  74. Sibi, M. 1976. La notion de programme genetique chez les vegetaux superieurs. II. Aspect experimental: obtention de variants par culture de tissus in vitro sur Lactuca sauva L., apparition de vigueur chez les croisements. Ann Amelior Plantes. 26: 523–547.Google Scholar
  75. Sibi, M. 1982. Heritable epigenic variations from in vitro tissue culture of Lycopersicon esculentum (var. Monalbo). In: Variability in Plants Regenerated from Tissue Culture, pp. 228–244 (eds E.D. Earle and Y. Demarly). New York: Praeger.Google Scholar
  76. Sibi, M., M. Biglary and Y. Demarly. 1984. Increase in the rate of recombinants in tomato (Lycopersicon esculentum L.) after in vitro regeneration. Theor Appl Genet. 68: 317–322.CrossRefGoogle Scholar
  77. Silvy, A. and Y. Mitteau. 1986. Diversification des varietes d’oeillet (Dianthus caryophyllus L.) par traitment mutagene. In: Proceeding, International Symposium on Nuclear Techniques and in vitro Culture for Plant Improvement, pp. 385–407. Vienna: IAEA.Google Scholar
  78. Skirvin, R.M. and J. Janick. 1976. Tissue culture-induced variation in scented Pelargonium spp. J Am Soc Hort Sci. 101:281–290.Google Scholar
  79. Skirvin, R.M., M. Norton and K.D. McPheeters. 1993. Somaclonal variation: has it proved useful for plant improvement? Acta Hort. 336: 333–340.Google Scholar
  80. Smith, S.S. and H.H. Murakishi. 1993. Restricted virus multiplication and movement of tomato mosaic virus in resistant tomato somaclones. Plant Sci. 89: 113–122.CrossRefGoogle Scholar
  81. Smulders, M.J.M., W. Rus-Kortekaas and B. Vosman. 1995. Tissue culture-induced DNA methylation polymorphisms in repetitive DNA of tomato calli and regenerated plants. Theor Appl Genet. 91: 1257–1264.CrossRefGoogle Scholar
  82. Sree Ramulu, K., P. Dijkhuis and S. Roest. 1983. Phenotypic variation and ploidy level of plants regenerated from protoplasts of tetraploid potato (Solanum tuberosum L. cv. ‘Bintje’). Theor Appl Genet. 65: 329–338.CrossRefGoogle Scholar
  83. Sree Ramulu, K., P. Dijkhuis, S. Roest, G.S. Bokelmann and B. de Groot. 1984. Early occurrence of genetic instability in protoplast cultures of potato. Plant Sci Lett. 36: 79–86.CrossRefGoogle Scholar
  84. Sree Ramulu, K., P. Dijkhuis, C.H. Hanisch ten Cate and B. De Groot. 1985. Patterns of DNA and chromosome variation during in vitro growth in various genotypes of potato. Plant Sci. 41: 69–78.CrossRefGoogle Scholar
  85. Sree Ramulu, K., P. Dijkhuis, S. Roest, G.S. Bokelmann and B. De Groot. 1986. Variation in phenotype and chromosome number of plants regenerated from protoplasts of dihaploid and tetraploid potato. Plant Breed. 97: 119–128.CrossRefGoogle Scholar
  86. Sree Ramulu, K., P. Dijkhuis and S. Roest. 1989. Patterns of phenotypic and chromosome variation in plants derived from protoplast cultures of monohaploid, dihaploid and diploid genotypes and in somatic hybrids of potato. Plant Sci. 60: 101–110.CrossRefGoogle Scholar
  87. Stephens, P.A., CD. Nickell and J.M. Widholm. 1991. Agronomic evaluation of tissue-culture-derived soybean plants. Theor Appl Genet. 82: 633–635.CrossRefGoogle Scholar
  88. Taylor, P.W.J., J.R. Geijskes, H.L. Ko, T.A. Fraser, R.J. Henry and R.G. Birch. 1995. Sensitivity of random amplified polymorphic DNA analysis to detect genetic change in sugarcane during tissue culture. Theor Appl Genet. 90: 1169–1173.CrossRefGoogle Scholar
  89. Taylor, RJ. and G.A. Secor. 1990. Potato protoplast-derived callus tissue challenged with Erwinia carotovora subsp. carotovora: survival, growth and identification of resistant callus lines. J Phytopathol. 129: 228–236.CrossRefGoogle Scholar
  90. Taylor, R.J., G.A. Secor, C.L. Ruby and P.H. Orr. 1993. Tuber yield, soft rot resistance, bruising resistance and processing quality in a population of potato (cv. Crystal) somaclones. Am Potato J. 70: 117–130.CrossRefGoogle Scholar
  91. Thomas, CM., P. Vos, M. Zabeau, D.A. Jones, K.A. Norcott, B.P. Chadwick and J.D.G. Jones. 1995. Identification of amplified restriction fragment polymorphism (AFLP) markers tightly linked to the tomato Cf-9 gene for resistance to Cladosporium fulvum. Plant J. 8: 785–794.CrossRefGoogle Scholar
  92. Thomas, E., S.W.J. Bright, J. Franklin, V.A. Lancaster, B.I. Miflin and R. Gibson. 1982. Variation amongst protoplast-derived potato plants (Solanum tuberosum cv. Maris Bard). Theor Appl Genet. 62: 65–68.Google Scholar
  93. van den Bulk, R.W., J. Jansen, W.H. Lindhout and H.J.M. Loffler. 1991. Screening of tomato somaclones for resistance to bacterial canker (Clavibacter michiganensis subsp. michiganensis). Plant Breed. 107: 190–196.CrossRefGoogle Scholar
  94. van den Bulk, R.W., H.J.M. Loffler, W.H. Lindhout and M. Koornneef. 1990. Somaclonal variation in tomato: effect of expiant source and a comparison with chemical mutagenesis. Theor Appl Genet. 80: 817–825.CrossRefGoogle Scholar
  95. van Everdink, W.J. and L.P. Pijnacker. 1994. Initial acytokinesis during leaf protoplast culture of dihaploid and tetraploid Solanum tuberosum and diploid S. bulbocastanum Potato Res. 37: 413–421.CrossRefGoogle Scholar
  96. van Swaaij, A.C., H. Nijdam, E. Jacobsen and W.J. Feenstra. 1987. Increased frost tolerance and amino acid content in leaves, tubers and leaf callus of regenerated hydroxyproline resistant potato clones. Euphytica. 36: 369–380.CrossRefGoogle Scholar
  97. Wisman, E., M.S. Ramanna and M. Koornneef. 1993. Isolation of a new paramutagenic allele of the sulfurea locus in the tomato cultivar Moneymaker following in vitro culture. Theor Appl Genet. 87: 289–294.CrossRefGoogle Scholar
  98. Wolff, D.W., R.E. Veilleux and C.J. Jensen. 1986. Evaluation of anther-derived Streptocarpus x hybridus and their progeny. Plant Cell Tissue Org Cult. 6: 167–172.CrossRefGoogle Scholar
  99. Wolter, A.M.A., H.C.H. Schoenmakers, S. Kamstra, J. van Eden, M. Koornneef and J.H. de Jong. 1994. Mitotic and meiotic irregularities in somatic hybrids of Lycopersicon esculentum and Solanum tuberosum. Genome. 37: 726–735.CrossRefGoogle Scholar
  100. Zhila, E.D., A.A. Kuchko and V.A. Sidorov. 1987. Chromosomal variability of potato protoclones. Tsitol Genet. 21: 105–108.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • S. M. Jain
    • 1
  • B. S. Ahloowalia
    • 2
  • R. E. Veilleux
    • 3
  1. 1.Department of Plant ProductionUniversity of HelsinkiHelsinkiFinland
  2. 2.Joint FAO/IAEA Division of Nuclear Techniques in Food and AgriculturePlant Breeding and Genetics SectionViennaAustria
  3. 3.Department of HorticultureVirginia Polytechnic Institute & State UniversityBlacksburgUSA

Personalised recommendations