Skip to main content

The renal toxicity of beta-lactam antibiotics: Mechanisms and clinical implications

  • Chapter

Abstract

The beta-lactam antibiotics (beta-lactams), are a complex group of bicyclic compounds with the following common features (Fig. 1): a strained, four-membered lactam ring, a nitrogen shared by the lactam and contiguous rings, and a carboxyl on the non-lactam ring removed by one carbon from the shared nitrogen. This central core, variably influenced by a series of side-group substituents, is important to the antibacterial action [1], renal tubular secretion [2], and nephrotoxicity [3] of these antibiotics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hoover JRE. Beta-lactam antibiotics: Structure-activity relationships. In: Demain AL, Solomon NA, ed. Handbook of Experimental Pharmacology. Vol 67/11. Beta-lactam Antibiotics. Berlin: Springer-Verlag, 1983: 119 – 245.

    Google Scholar 

  2. Moller JV, Sheikh MI. Renal organic anion transport system: Pharmacological, physiological, and biochemical aspects. Pharm Rev 1983; 34: 315–58.

    Google Scholar 

  3. Tune BM. The nephrotoxicity of beta-lactam antibiotics. In: Hook JB, Goldstein RS, ed. Toxicology of the Kidney. New York: Raven Press, 1993: 257–81.

    Google Scholar 

  4. Foord RD. Cephaloridine, cephalothin and the kidney. J Antimicrob Chemother 1975; 1: 119–33.

    PubMed  CAS  Google Scholar 

  5. Foord RD. Aspects of clinical trials with ceftazidime worldwide. Amer J Med 1985; 79(suppl 2A): 110–3.

    PubMed  CAS  Google Scholar 

  6. Klastersky J, Hensgens C, Debusscher L. Empiric therapy for cancer patients: Comparative study of ticarcillin-tobràmycin, ticarcillin-cephalothin, and cephalothin-tobramycin. Antimicrob Ag Chemother 1975; 7: 640–5.

    CAS  Google Scholar 

  7. Wade JC, Petty BG, Conrad G, Smith CR, Lipsky JJ, Ellner J, Lietman PS. Cephalothin plus an aminoglycoside is more nephrotoxic than methicillin plus an aminoglycoside. Lancet 1978; 2: 604–6.

    PubMed  CAS  Google Scholar 

  8. EORTC International Antimicrobial Therapy Project Group. Three antibiotic regimens in the treatment of infection in febrile granulocytopenic patients with cancer. J Infect Dis 1978; 137: 14–29.

    Google Scholar 

  9. Atkinson RM, Currie JP, Davis B, Pratt DAH, Sharpe HM, Tomich EG. Acute toxicity of cephaloridine, an antibiotic derived from cephalosporin C. Toxicol Appl Pharmacol 1966; 8: 398–406.

    PubMed  CAS  Google Scholar 

  10. Birnbaum J, Kahan FM, Kropp H, MacDonald JS. Carbapenems. A new class of beta-lactam antibiotics. Discovery and improvement of Imipenem/Cilastatin. Amer J Med 1985; 78(suppl 6A): 3–21.

    PubMed  CAS  Google Scholar 

  11. Bendirdjian J-P, Prime DJ, Browning MC, Hsu C-Y, Tune BM. Additive nephrotoxicity of cephalosporins and aminoglycosides in the rabbit. J Pharmacol Exper Therap 1981; 218: 631–85.

    Google Scholar 

  12. Child KJ, Dodds MG. Mechanism of urinary excretion of cephaloridine and its effects on renal function in animals. Brit J Pharmacol Chemother 1966; 26: 108 – 19.

    CAS  Google Scholar 

  13. Child KJ, Dodds MG. Nephron transport and renal tubular effects of cephaloridine in animals. Brit J Pharmacol Chemother 1967; 30: 354–70.

    CAS  Google Scholar 

  14. Welles JS, Bison WR, Harris PN, Small RM, Anderson RC. Toxicity, distribution, and excretion of cephaloridine in laboratory animals. Antimicrob Ag Chemother 1966; 1965: 863–9.

    Google Scholar 

  15. Silverblatt F, Turck M, Bulger R. Nephrotoxicity due to cephaloridine: A light- and electron-microscopic study in rabbits. J Infect Dis 1970; 122: 33–44.

    PubMed  CAS  Google Scholar 

  16. Tune BM. Effect of organic acid transport inhibitors on renal cortical uptake and proximal tubular toxicity of cephaloridine. J Pharmacol Exper Therap 1972; 181: 250–6.

    CAS  Google Scholar 

  17. Tune BM, Fernholt M. Relationship between cephaloridine and p-aminohippurate transport in the kidney. Amer J Physiol 1973; 225: 1114–7.

    PubMed  CAS  Google Scholar 

  18. Tune BM, Fernholt M, Schwartz A. Mechanism of cephaloridine transport in the kidney. J Pharmacol Exper Therap 1974; 191: 311–7.

    CAS  Google Scholar 

  19. Tune BM, Wu KY, Fravert D, Holtzman D. Effect of cephaloridine on respiration by renal cortical mitochondria. J Pharmacol Exper Therap 1979; 210: 98–100.

    CAS  Google Scholar 

  20. Tune BM, Fravert D. Cephalosporin nephrotoxicity. Transport, cytotoxicity and mitochondrial toxicity of cephaloglycin. J Pharmacol Exper Therap 1980; 215: 186–90.

    CAS  Google Scholar 

  21. Kuo C-H, Maita K, Slieght SD, Hook JB. Lipid peroxidation: A possible mechanism of cephaloridine-induced nephrotoxicity. Toxicol Appl Pharmacol 1983; 67: 78–88.

    PubMed  CAS  Google Scholar 

  22. Cojocel C, Hannemann J, Inselmann G, Laeschke KH, Baumann K. Lipid peroxidation, a possible mechanism of cephalosporin induced nephrotoxicity. Pflügers Archiv 1984; 400(suppl): R19.

    Google Scholar 

  23. Cojocel C, Hannemann J, Baumann K. Cephaloridine-induced lipid peroxidation by reactive oxygen species as a possible mechanism of cephaloridine nephrotoxicity. Biochem Biophys Acta 1985; 834: 402–10.

    PubMed  CAS  Google Scholar 

  24. Tune BM, Sibley RK, Hsu C-Y. The mitochondrial respiratory toxicity of cephalosporin antibiotics. An inhibitory effect on substrate uptake. J Pharmacol Exper Therap 1988; 245: 1054–9.

    CAS  Google Scholar 

  25. Tune BM, Fravert D, Hsu C-Y. Thienamycin nephrotoxicity: Mitochondrial injury and oxidative effects of imipenem in the rabbit kidney. Biochem Pharmacol 1989; 38: 3779–83.

    PubMed  CAS  Google Scholar 

  26. Tune B, Fravert D, Hsu C-Y. The oxidative and mitochondrial toxic effects of cephalosporin antibiotics in the kidney. A comparative study of cephaloridine and cephaloglycin. Biochem Pharmacol 1989; 38: 795–802.

    PubMed  CAS  Google Scholar 

  27. Tune BM, Hsu C-Y. The renal mitochondrial toxicity of cephalosporins: Specificity of the effect on anionic substrate uptake. J Pharmacol Exper Therap 1990; 252: 65–9.

    CAS  Google Scholar 

  28. Wold JS, Turnipseed SA. The effect of renal cation transport inhibitors on the in vivo and in vitro accumulation and efflux of cephaloridine. Life Sci 1980; 27: 2559–64.

    PubMed  CAS  Google Scholar 

  29. Goldstein RS, Contardi LR, Pasino DA, Hook JB. Mechanisms mediating cephaloridine inhibition of gluconeogenesis. Toxicol Appl Pharmacol 1987; 87: 297–305.

    PubMed  CAS  Google Scholar 

  30. Cojocel C, Göttsche U, Tölle K-L, Baumann K. Nephrotoxic potential of first-, second-, and third-generation cephalosporins. Arch Toxicol 1988; 62: 458–64.

    PubMed  CAS  Google Scholar 

  31. Tune BM, Wu KY, Longerbeam D, Holtzman D. Renal transport and toxicity of cephalosporins, including effects on tubular and mitochondrial respiration. In: Lemieux G, ed. Proceedings of the Seventh International Congress of Nephrology. Basel: Karger, 1978: 279–87.

    Google Scholar 

  32. Rush GF, Ponsler GD. Cephaloridine-induced biochemical changes and cytotoxicity in suspensions of rabbit isolated proximal tubules. Toxicol Appl Pharmacol 1991; 109: 314–26.

    PubMed  CAS  Google Scholar 

  33. Rush GF, Heim RA, Ponsler RA, Engelhardt J. Cephaloridine-induced renal pathological and biochemical changes in female rabbits and isolated proximal tubules in suspension. Toxicol Path 1992; 20: 155–68.

    CAS  Google Scholar 

  34. Williams PD, Laska DA, Tay LK, Hottendorf GH. Comparative toxicities of cephalosporin antibiotics in a rabbit kidney cell line (LLC-RK1). Antimicrob Ag Chemother 1988; 32: 314–8.

    CAS  Google Scholar 

  35. Williams PD, Hitchcock MJM, Hottendorf GH. Effect of cephalosporins on organic ion transport in renal membrane vesicles from rat and rabbit kidney cortex. Res Comm Chem Path Pharmacol 1985; 47: 357–69.

    CAS  Google Scholar 

  36. Tune BM, Hsu C-Y. The renal mitochondrial toxicity of beta-lactam antibiotics: In vitro effects of cephalo-glycin and imipenem. J Amer Soc Nephrol 1990; 1: 815–21.

    CAS  Google Scholar 

  37. Tune BM. Relationship between the transport and toxicity of cephalosporins in the kidney. J Infect Dis 1975; 132: 189–94.

    PubMed  CAS  Google Scholar 

  38. Tune BM, Wu K-Y, Kempson RL. Inhibition of transport and prevention of toxicity of cephaloridine in the kidney. Dose-responsiveness of the rabbit and the guinea pig to probenecid. J Pharmacol Exper Therap 1977; 202: 466–71.

    CAS  Google Scholar 

  39. Tune BM, Fravert D. Mechanisms of cephalosporin nephrotoxicity. A comparison of cephaloridine and cephaloglycin. Kidney Int 1980; 18: 591–600.

    PubMed  CAS  Google Scholar 

  40. Pasino DA, Miura K, Goldstein RS, Hook JB. Cephaloridine nephrotoxicity: strain and sex differences in mice. Fund Appl Toxicol 1985; 5: 1153–60.

    CAS  Google Scholar 

  41. Williams BB, Cushing RD, Lerner AM. Severe combined nephrotoxicity of BL-P1654 and gentamicin. J Infect Dis 1974; 130: 694–5.

    PubMed  CAS  Google Scholar 

  42. Wang PL, Prime DJ, Hsu C-Y, Tune BM. Effects of ureteral obstruction on the toxicity of cephalosporins in the rabbit kidney. J Infect Dis 1982; 145: 574–81.

    PubMed  CAS  Google Scholar 

  43. McMurtry RJ, Mitchell JR. Renal and hepatic necrosis after metabolic activation of 2-substituted furans and thiophenes, including furosemide and cephaloridine. Toxicol Appl Pharmacol 1977; 42: 285–300.

    PubMed  CAS  Google Scholar 

  44. Browning MC, Tune BM. The reactivity and binding of beta-lactam antibiotics in rabbit renal cortex. J Pharmacol Exper Therap 1983; 226: 640–4.

    CAS  Google Scholar 

  45. Tune BM, Hsu C-Y. Toxicity of cephaloridine to carnitine transport and fatty acid metabolism in rabbit renal cortical mitochondria: Structure-activity relationships. J Pharmacol Exper Therap 1994; 270: 873–880.

    CAS  Google Scholar 

  46. Brogard JM, Comte F, Pinget M. Pharmacokinetics of cephalosporin antibiotics. Antibiot Chemother 1978; 25: 123–62.

    PubMed  CAS  Google Scholar 

  47. Tune BM, Burg MB, Patlak CS. Characteristics of p-aminohippurate transport in proximal renal tubules. Amer J Physiol 1969; 217: 1057–63.

    PubMed  CAS  Google Scholar 

  48. Lee CC, Herr EB, Anderson RC. Pharmacological and toxicological studies on cephalothin. Clin Med 1963; 70: 1123–38.

    PubMed  CAS  Google Scholar 

  49. Perkins RL, Apicella MA, Lee IS, Cuppage FE, Saslaw S. Cephaloridine and cephalothin: comparative studies of potential nephrotoxicity. J Lab Clin Med 1968; 71: 75–84.

    PubMed  CAS  Google Scholar 

  50. Tune BM. The nephrotoxicity of cephalosporin antibiotics. Structure-activity relationships. Comm Toxicol 1986; 1: 145–70.

    Google Scholar 

  51. Wold JS, Joost RR, Owen NV. Nephrotoxicity of cephaloridine in newborn rabbits: role of the renal anionic transport system. J Pharmacol Exper Therap 1977; 201: 778–85.

    CAS  Google Scholar 

  52. Tune BM, Wu K-Y, Longerbeam DF, Kempson RL. Transport and toxicity of cephaloridine in the kidney. Effect of furosemide, p-aminohippurate and saline diuresis. J Pharmacol Exper Therap 1977; 202: 472–8.

    CAS  Google Scholar 

  53. Wold JS, Turnipseed SA, Miller BL. The effect of renal cation transport on cephaloridine nephrotoxicity. Toxicol Appl Pharmacol 1979; 45: 115–22.

    Google Scholar 

  54. Inui K-I, Okano T, Takano M, Kitazawa S, Hori R. Carrier-mediated transport of aminocephalosporins by brush border membrane vesicles isolated from rat kidney cortex. Biochem Pharmacol 1983; 32: 621–6.

    PubMed  CAS  Google Scholar 

  55. Tune BM, Kuo C-H, Hook JB, Hsu C-Y, Fravert D. Effects of piperonyl butoxide on cephalosporin nephrotoxicity in the rabbit. An effect on cephaloridine transport. J Pharmacol Exper Therap 1983; 224: 520–4.

    CAS  Google Scholar 

  56. Kuo C-H, Tune BM, Hook JB. Effect of piperonyl butoxide on organic anion and cation transport in rabbit kidneys. Proc Soc Exper Biol Med 1983; 174: 165–71.

    CAS  Google Scholar 

  57. Cojocel C, Laeschke KH, Inselmann G, Baumann K. Inhibition of cephaloridine-induced lipid peroxidation. Toxicol 1985; 35: 295–305.

    CAS  Google Scholar 

  58. Goldstein RS, Pasino DA, Hewitt WR, Hook JB. Biochemical mechanisms of cephaloridine nephrotoxicity: Time and concentration dependence of perox-idative injury. Toxicol Appl Pharmacol 1986; 87: 297–305.

    Google Scholar 

  59. Tipper DJ, Strominger JL. Mechanism of action of penicillins: a proposal based on their structural similarity to acyl-D-alanyl-D-alanine. Proc Nat Acad Sci 1965; 541: 1133–41.

    Google Scholar 

  60. Indelicato JM, Norvilas TT, Pfeiffer RR, Wheeler WJ, Wilham WL. Substituent effects upon the base hydrolysis of penicillins and cephalosporins. Competitive intramolecular nucleophilic amino attack in cephalosporins. J Med Chem 1974; 17: 523–7.

    PubMed  CAS  Google Scholar 

  61. Indelicato JM, Dinner A, Peters LR, Wilham WL. Hydrolysis of 3-chloro-3-cephems. Intramolecular nucleophilic attack in cefaclor. J Med Chem 1977; 20: 961–3.

    PubMed  CAS  Google Scholar 

  62. Indelicato JM, Pasini CE. The acylating potential of gamma-lactam antibacterials: base hydrolysis of bicyclic pyrazolidinones. J Med Chem 1988; 31: 1227–30.

    PubMed  CAS  Google Scholar 

  63. Yamana T, Tsuji A, Kanayama K, Nakano O. Comparative stabilities of cephalosporins in aqueous solution. J Antibiot 1974; 27: 1000–2.

    PubMed  CAS  Google Scholar 

  64. Yamana T, Tsuji A. Comparative stability of cephalosporins in aqueous solution: Kinetics and mechanisms of degradation. J Pharmaceut Sci 1976; 65: 1563–74.

    CAS  Google Scholar 

  65. Waxman DJ, Strominger JL. Penicillin binding proteins and the mechanism of action of beta-lactam antibiotics. Ann Rev Biochem 1983; 52: 825–69.

    PubMed  CAS  Google Scholar 

  66. Capel-Edwards K, Pratt DAH. Renal tolerance of ceftazidime in animals. J Antimicrob Chemother 1981; 8(suppl B): 241–5.

    PubMed  CAS  Google Scholar 

  67. EORTC International Antimicrobial Therapy Cooperative Group. Ceftazidime combined with a short or long course of amikacin for empirical therapy of gram-negative bacteremia in cancer patients with granulocytopenia. N Engl J Med 1987; 317: 1692–8.

    Google Scholar 

  68. Tune BM, Hsu C-Y. Toxicity of cephalosporins to fatty acid metabolism in rabbit renal cortical mitochondria. Biochem Pharmacol 1995; 49: 727–734.

    PubMed  CAS  Google Scholar 

  69. Browning MC, Wang PL, Hsu C-Y, Tune BM. Interaction of ischemic and antibiotic-induced injury in the rabbit kidney. J Infect Dis 1983; 147: 341–51.

    PubMed  CAS  Google Scholar 

  70. Cojocel C, Kramer W, Mayer D. Depletion of cytochrome P-450 and alterations of activities of drug metabolizing enzymes induced by cephaloridine in the rat kidney cortex. Biochem Pharmacol 1988; 37: 3781–5.

    PubMed  CAS  Google Scholar 

  71. Kramer W, Cojocel C, Mayer D. Specific alterations of rat renal microsomal proteins induced by cephaloridine. Biochem Pharmacol 1988; 37: 4135–40.

    PubMed  CAS  Google Scholar 

  72. Venkatachalam MA, Bernard DB, Donohoe JF, Levinsky NG. Ischemic damage and repair in the rat proximal tubule: Differences among the SI, S2, and S3 segments. Kidney Int 1978; 14: 31–49.

    PubMed  CAS  Google Scholar 

  73. Trump BF, Bulger RE. Studies of cellular injury in isolated flounder tubules. IV. Electron microscopic observations of changes during the phase of altered homeostasis in tubules treated with cyanide. Lab Investig 1968; 18: 731–9.

    PubMed  CAS  Google Scholar 

  74. Silverblatt F. Pathogenesis of nephrotoxicity of cephalosporins and aminoglycosides: A review of current concepts. Rev Infect Dis 1982; 4: S360–5.

    PubMed  Google Scholar 

  75. Bendirdjian J-P, Prime DJ, Browning MC, Tune BM. The mitochondrial respiratory toxicity of cephalosporins. Molecular properties and pathogenic significance. In: Fillastre J-P, ed. Nephrotoxicity, Ototoxicity of Drugs. Rouen: Editions INSERM, 1982: 303–19.

    Google Scholar 

  76. Bisaccia F, Indiveri C, Palmieri F. Purification and reconstitution of two anion carriers from rat liver mitochondria: the dicarboxylate and the 2-oxoglutarate carrier. Biochim Biophys Acta 1988; 933: 229–40.

    PubMed  CAS  Google Scholar 

  77. Stryer L. Citric acid cycle. In: Biochemistry. Third edition New York: WH Freeman, 1988: 373–97.

    Google Scholar 

  78. Weidemann MJ, Krebs HA. The fuel of respiration in rat renal cortex. Biochem J 1969; 112: 149–66.

    PubMed  CAS  Google Scholar 

  79. Hohenegger M, Wittmann G, Dalheim H. Oxidation of fatty acid by different zones of the rat kidney. Pflügers Arch 1973; 341: 105–12.

    PubMed  CAS  Google Scholar 

  80. Le Hir M, Dubach UC. Distribution of two enzymes of beta oxidation of fatty acid along the rat nephron. In: Morelm F, ed. Biochemistry of kidney function, INSERM Symposia No. 21. New York: Elsevier Biomedical, 1982: 87–94.

    Google Scholar 

  81. Balaban RS, Mandel LJ. Metabolic substrate utilization by rabbit proximal tubule. An NADH fluorescence study. Am J Physiol 1988; 254: F407–16.

    PubMed  CAS  Google Scholar 

  82. Goldstein RS. Biochemical heterogeneity and site-specific tubular injury. In: Hook JB, Goldstein RS, ed. Toxicology of the Kidney. Second edition. New York: Raven Press, Ltd., 1993: 201–47.

    Google Scholar 

  83. Tzagoloff A. Oxidative pathways of mitochondria. In: Mitochondria. New York: Plenum Press, 1982: 39–60.

    Google Scholar 

  84. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD. Energy conversion: Mitochondria and Chloroplasts. In: Molecular Biology of the Cell. 2nd ed. New York: Garland, 1989: 342–404.

    Google Scholar 

  85. Bieber LL, Farrell S. Carnitine acyltransferases. Enzymes 1983; 16: 627–44.

    CAS  Google Scholar 

  86. Paradies G, Papa S. Substrate regulation of the pyruvate-transporting system in rat liver mitochondria. FEBS Letts 1976; 62: 318–21.

    CAS  Google Scholar 

  87. Paradies G, Papa S. The kinetics and substrate specificity of the pyruvate translocator in rat liver mitochondria. Biochim Biophys Acta 1977; 462: 333–46.

    PubMed  CAS  Google Scholar 

  88. Tune BM, Browning MC, Hsu C-Y, Fravert D. Prevention of cephalosporin nephrotoxicity by other cephalosporins and by penicillins without significant inhibition of renal cortical uptake. J Infect Dis 1982; 145: 174–80.

    PubMed  CAS  Google Scholar 

  89. Kropp H, Sundelof JG, Hajdu R, Kahan FM. Metabolism of thienamycin and related carbapenem antibiotics by the renal dipeptidase, dehydropeptidase-I. Antimicrob Ag Chemother 1982; 22: 62–70.

    CAS  Google Scholar 

  90. Kahan JS, Kahan FM, Goegelman R, Currie SA, Jackson M, Stapley EO, Miller TW, Miller AK, Hendlin D, Mochales S, Hernandez S, Woodruff HB, Birnbaum J. Thienamycin, a new beta-lactam antibiotic. I. Discovery, taxonomy, isolation and physical properties. J Antibiot 1978; 32: 1–12.

    Google Scholar 

  91. Kropp H, Sundelof JG, Kahan JS, Kahan FM, Birnbaum J. MK0787 (N-formimidoyl thienamycin): Evaluation of in vitro and in vivo activities. Antimicrob Ag Chemother 1980; 17: 993–1000.

    CAS  Google Scholar 

  92. Topham JC, Murgatroyd LB, Jones DV, Goonetilleke UR, Wright J. Safety evaluation of meropenem in animals: studies on the kidney. J Antimicrob Chemother 1989; 24(suppl A): 287–306.

    PubMed  CAS  Google Scholar 

  93. Joshi JH, Newman KA, Brown BW, Finley RS, Ruxer RL, Moody MA, Schimpff SC. Double beta-lactam regimen compared to an aminoglycoside/beta-lactam regimen as empiric antibiotic therapy for febrile granulocytopenic cancer patients. Support Care Cancer 1993; 1: 186–94.

    PubMed  CAS  Google Scholar 

  94. Winston DJ, Ho WG, Bruckner DA, Champlin RE. Beta-lactam antibiotic therapy in febrile granulocytopenic patients. A randomized trial comparing cefoperazone plus piperacillin, ceftazidime plus piperacillin, and imipenem alone. Ann Int Med 1991; 115: 849–59.

    PubMed  CAS  Google Scholar 

  95. Levinsky NG, Bernard DB, Johnston PA. Mannitol and loop diuretics in acute renal failure. In: Brenner BM, Lazarus JM, ed. Acute Renal Failure. Philadelphia: WB Saunders Company, 1983: 712–22.

    Google Scholar 

  96. Tune BM, Hsu C-Y, Fravert D. Mechanisms of the endotoxin-cephalosporin toxic synergy and the protective action of saline in the rabbit kidney. J Pharmacol Exper Therap 1988; 244: 520–5.

    CAS  Google Scholar 

  97. Tune BM, Hsu C-Y. Augmentation of antibiotic nephrotoxicity by endotoxemia in the rabbit. J Pharmacol Exper Therap 1985; 234: 425–30.

    CAS  Google Scholar 

  98. Tune BM, Reznik VM, Mendoza SA. Renal complications of drug therapy. In: Holliday MA, Barratt TM, Avner EA, ed. Pediatric Nephrology, third edition. Baltimore: Williams and Wilkins, 1994: 1212–26.

    Google Scholar 

  99. Dodds MG, Foord RD. Enhancement by potent diuretics of renal tubular necrosis induced by cephalo-ridine. Brit J Pharmacol 1970; 40: 227–36.

    CAS  Google Scholar 

  100. Linton AL, Bailey RR, Turnbull DI. Relative nephrotoxicity of cephalosporin antibiotics in an animal model. Canad Med Assoc J 1972; 107: 414–6.

    PubMed  CAS  Google Scholar 

  101. Bailey RR, Natale R, Turnbull DI, Linton AL. Protective effect of furosemide in acute tubular necrosis and acute renal failure. Clin Sci Molec Med 1973; 45: 1–17.

    CAS  Google Scholar 

  102. Smith JT, Lewis CS. Mechanisms of antimicrobial resistance and implications for epidemiology. Vet Microbiol 1993; 35: 233–42.

    PubMed  CAS  Google Scholar 

  103. Spratt BG. Resistance to antibiotics mediated by target alterations. Science 1994; 264: 388–93.

    PubMed  CAS  Google Scholar 

  104. Prime DJ, Tune BM. The nephrotoxicity of antimicrobial drugs. In: Moss AJ, ed. Pediatrics Update. New York: Elsevier/North Holland, 1981: 265–85.

    Google Scholar 

  105. Tune BM. The renal tubular transport and nephrotoxicity of beta-lactam antibiotics. In: Anders MW, DeKant W, Henschler D, Oberleithner H, Silbernagl S, ed. Renal Disposition and Nephrotoxicity of Xeno-biotics. Orlando: Academic Press, 1993: 249–67.

    Google Scholar 

  106. Ross CR, Holohan PD. Transport of organic anions and cations in isolated renal plasma membranes. Ann Rev Pharmacol Toxicol 1983; 23: 65–85.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tune, B.M. (1998). The renal toxicity of beta-lactam antibiotics: Mechanisms and clinical implications. In: De Broe, M.E., Porter, G.A., Bennett, W.M., Verpooten, G.A. (eds) Clinical Nephrotoxins. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9088-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9088-4_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-9090-7

  • Online ISBN: 978-94-015-9088-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics