Abstract
In the present paper an analysis of quasi-isometric mappings and almost isometries of function algebras is provided. In addition the A. D. Aleksandrov problem of conservative distances is studied and new open problems are discussed.
Key words and phrases
- Isometries
- Approximate isometries
- Quasi-isometries
- Strain
- Function algebras
- Commutative Banach algebras
- Gelfand formula
- Gelfand transform
- Aleksandrov problem
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
A. D. Aleksandrov, Seminar report, Uspehi Mat. Nauk 5 (1950), no. 3 (37), 187.
A. D. Aleksandrov, Mappings of families of sets, Soviet Doklady 11 (1970), 116–120; 376-380.
F. S. Beckman and D. A. Quarles On isometries of Euclidean spaces, Proc. Amer. Math. Soc. 4 (1953), 810–815.
W. Benz, Geometrische Transformationen unter Besonderer Berücksichtigung der Lorentztransformationen, BI-Wissenschafts-Verlag, Mannheim — Wien — Zurich, 1992.
W. Benz On a general principle in geometry that leads to functional equations, Aequationes Math. 46 (1993), 3–10.
W. Benz and H. Berens A contribution to a theorem of Ulam and M azur, Aequationes Math. 34 (1987), 61–63.
R. Bishop Characterizing motions by unit distance invariance, Math. Mag. 46 (1973), 148–151.
K. Ciesielski and Th. M. Rassias On the isometry problem for Euclidean and non-Euclidean spaces, Facta Univ. Ser. Math. Inform. 7 (1992), 107–115.
R. J. Fleming and J. E. Jaminson, Isometries in Banach spaces: A survey, Analysis, Geometry and Groups (H. M. Srivastava and Th. M. Rassias, eds.), Hadronic Press Inc., Palm Harbor, Florida, 1993, pp. 52–123.
T. W. Gamelin, Uniform Algebras, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1969.
K. R. Goodearl, Notes on Real and Complex C-Algebras, Shiva Publishing Ltd., Nantwich, Cheshire, England, 1982.
A. Guc, On Mappings that Preserve a Family of Sets in Hilbert and Hyperbolic Spaces, Candidate’s Dessertation, Novosibirsk, 1973.
R. A. Hirschfeld and W. Zelazko On spectral norm Banach algebras, Bull. Acad. Polon. Sci. 16 (1968), 195–199.
K. Jarosz Metric and algebraic perturbations of function algebras, Proc. Edinburgh Math. Soc. 26 (1983), 383–391.
K. Jarosz, Perturbations of Banach Algebras, Lect. Notes Math. 1120, Springer Verlag, Berlin — New York, 1985.
F. John Rotation and strain, Commun. Pure Appl. Math. 14 (1961), 391–413.
F. John On quasi-isometric mappings I, Commun. Pure Appl. Math. 21 (1968), 77–110.
A. V. Kuz’minyh On a characteristic property of isometric mappings, Soviet Math. Dokl. 17 (1976), 43–45.
J. Lester On distance preserving transformations of lines in Euclidean three space, Aequationes Math. 28 (1985), 69–72.
G. Lovblom Isometries and almost isometries between spaces of continuous functions, Israel J. Math. 56 (1986), 143–159.
B. Mielnik Phenomenon of mobility in non-linear theories, Commun. Math. Phys. 101 (1985), 323–339.
B. Mielnik and Th. M. Rassias On the Aleksandrov problem of conservative distances, Proc. Amer. Math. Soc. 116 (1992), 1115–1118.
P. S. Modenov and A. S. Parkhomenko, Geometric Transformations Vol. 1, Academic Press, New York — London, 1965.
M. Nagasawa Isomorphisms between commutative Banach algebras with an application to rings of analytic functions, Kodai Math. Sem. Rep. 11 (1959), 182–188.
H. Rademacher Über partielle und total Differenzbarkeit von Funktionen mehrer Variabein und über die Transformation von Doppelintegralen, Math. Ann. 79 (1919), 340–359.
Th. M. Rassias and P. Šemrl On the Mazur-Ulam theorem and the Aleksandrov problem for unit distance preserving mappings, Proc. Amer. Math. Soc. 118 (1993), 919–925.
Th. M. Rassias and C. S. Sharma Properties of isometries, J. Natural Geometry 3 (1993), 1–38.
Th. M. Rassias, Is a distance one preserving mapping between metric spaces always an isometry?, Amer. Math. Monthly 90 (1983), 200.
Th. M. Rassias, Some remarks on isometric mappings, Facta Univ. Ser. Math. Inform. 2 (1987), 49–52.
Th. M. Rassias, On the stability of mappings, Rend, del Sem. Mat. Fis. Milano 58 (1988), 91–99.
Th. M. Rassias, The stability of linear mappings and some problems on isometrics, Proc. Intern. Conf. Math. Analysis and Its Applications, 1985, Pergamon Press, Oxford, 1988, pp. 175–184.
Th. M. Rassias, Mappings that preserve unit distance, Indian J. Math. 32 (1990), 275–278.
Th. M. Rassias, Problems and Remarks, Aequationes Math. 39 (1990), 304 and 320–321.
R. Rochberg Almost isometries of Banach spaces and moduli of planar domains, Pacific J. Math. 49 (1973), 455–466.
R. Rochberg Deformations of uniform algebras, Proc. London Math. Soc. 39 (1979), 93–118.
E. L. Stout, The Theory of Uniform Algebras, Bogden and Quigley, Inc., Publishers, Tarry-town-on-Hudson, New York and Belmont, California, 1971.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1998 Springer Science+Business Media New York
About this chapter
Cite this chapter
Rassias, T.M. (1998). Properties of Isometries and Approximate Isometries. In: Milovanović, G.V. (eds) Recent Progress in Inequalities. Mathematics and Its Applications, vol 430. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9086-0_19
Download citation
DOI: https://doi.org/10.1007/978-94-015-9086-0_19
Publisher Name: Springer, Dordrecht
Print ISBN: 978-90-481-4945-2
Online ISBN: 978-94-015-9086-0
eBook Packages: Springer Book Archive