Skip to main content

Fracture Mechanics in High Pressure Hydrogen for the Thermomechanically Treated Steel X70

  • Conference paper
Hydrogen Power: Theoretical and Engineering Solutions
  • 970 Accesses

Abstract

An important aspect in the transportation of gaseous energy carriers like natural gas or hydrogen in long-range pipelines is the economy. To achieve this goal not only the price for production is decisive, but also the costs for the pipeline. In consequence the transported volume per time unit should be increased by higher gas pressure and larger diameter of the pipes. The realization of these demands depends on the availability of suitable steels of high strength and toughness as well as good weldability. One class of steels having these characteristics are the thermomechanically treated steels used in modern long-range transport pipelines for natural gas [1, 2]. With respect to high pressure hydrogen the operation pressure should be higher than 10 MPa for a competitive economy [3]. In this context the question whether existing modern pipelines for natural gas can be used for hydrogen transport and distribution or not is to be considered also [4–6]. A further aspect is the interaction of high pressure hydrogen at ambient temperature with the pipe material and the measures to mitigate hydrogen embrittlement, if present, by e. g. admixtures to the hydrogen gas. A survey on hydrogen embrittlement of ferritic steels is given in [6] and on the inhibiting characteristics of special admixtures with respect to material properties in [7]. In order to clarify this situation also for thermomechanically treated steels first qualitative results on the amount of hydrogen embrittlement were received by the constant extension rate test for the steel StE 480.7 TM (X70) [8]. Thereby the inhibiting influence of oxygen admixture was investigated. A quantitative statement on the toughness behaviour in presence of high pressure hydrogen with admixtures of oxygen received by fracture mechanics J-integral tests was not available for the steel X70. Therefore it was the aim of the present investigation to close this gap also in view of materials related safety considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Käding, G., Bleilebens, H., Fix, W., Wolhard, D. and Wiinnenberg, K.: Innovationsprozesse in der Stahlindustrie, Stahl und Eisen 113, Heft 3 (1993), 39–47.

    Google Scholar 

  2. Hillenbrand, H.G., Amoris, E., Niederhoff, K.A., Perdix, C. Streißelberger, A. and Zeislmair, U.: Manufacturability of linepipe in grades up to X 100 from TM processed plate, in Denys, R. (ed.), Pipeline Technology, Volume II, Elsevier Science B.V. (1995), 273-285.

    Google Scholar 

  3. Steyer, H., Diplomarbeit, DFVLR (1982).

    Google Scholar 

  4. Fasold, H.-G.: Wasserstoffgas — ein potentieller Energieträger des 21. Jahrhunderts?, gwf-gas/erdgas 129(1988), 281–291.

    CAS  Google Scholar 

  5. Deimel, P., Fischer, H. and Hoffmann, M.: EQHHPP Supplementary Task Program, WP 480 Final Report, MPA-Report 871 700, Stuttgart, September 1991.

    Google Scholar 

  6. Deimel, P. and Hoffmann, M.: Materialfragen beim Einsatz von Wasserstoff in gasförmiger und flüssiger Form, in Studie “Gefährdungspotential bei einem verstärkten Wasserstoffeinsatz” im Auftrag des Büros für Technikfolgenabschätzung des Deutschen Bundestages (TAB), DLR Stuttgart, (Februar 1992), 78-174 and literature cited therein.

    Google Scholar 

  7. Kussmaul, K., Deimel, P. and Sattler, E.: Einfluß von gasförmigem Wasserstoff unterschiedlicher Reinheit auf die Eigenschaften ferritischer Rohrleitungsstähle, in Kolloquium 1994 des Sonderforschungsbereichs 270, “Wasserstoff als Energieträger”, VDI-Verlag, Düsseldorf, (1994), 267–286.

    Google Scholar 

  8. Kussmaul, K., Deimel, P. and Sattler, E.: Tensile properties of the steel X70 in high pressure hydr ogen gas with admixtures of oxygen at different strain rates, in Block, D.L. and Veziroglu, T.N. (eds.) Proc. 10 thWHEC, June 20–24, 1994, Cocoa Beach, Vol.1 (1994), 285-294.

    Google Scholar 

  9. Kussmaul, K., Deimel, P., Fischer, H. and Sattler, E.: Fracture mechanical behaviour of the steel 15 MnNi 6 3 in argon and in high pressure hydrogen gas with admixture of oxygen, in Veziroglu, T.N. et al. (eds.), Proc. 11 th WHEC, June 23–28, 1996, Stuttgart, Vol.3 (1996), 2113-2122.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Deimel, P., Fischer, H., Sattler, E., Hoffmann, M. (1998). Fracture Mechanics in High Pressure Hydrogen for the Thermomechanically Treated Steel X70. In: Saetre, T.O. (eds) Hydrogen Power: Theoretical and Engineering Solutions. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9054-9_43

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9054-9_43

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5029-8

  • Online ISBN: 978-94-015-9054-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics