Skip to main content

Electrocatalytic and Hydridic Theory for Hydrogen Electrode Reactions and Prediction of Synergetic Catalysts in the Light of Fermi Dynamics and Structural Bonding Factors

  • Conference paper
Hydrogen Power: Theoretical and Engineering Solutions
  • 977 Accesses

Abstract

The Balandin type volcano plots have been considered for the main criterion both in catalysis and electrocatalysis to estimate their fundamental properties and optimal activity: (α) The ones, when some physical feature or catalytic activity itself is plotted usually along transition series, and (β) The others, when catalytic activity arises as a function of some energetic property, the most usually of the adsorption enthalpy of intermediates bonding upon the substrate in the rate determining step (rds).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pauling, L.: ‘The Nature of Chemical Bond’, 3rd Ed., Cornell Univ. Press, Ithaca, New York, 1960.

    Google Scholar 

  2. Hume-Rothery, W.: Structures of Metals and Alloys, Institute of Metals, London, 1936.

    Google Scholar 

  3. Brewer, L.: Prediction of high temperature metallic phase diagrams, in V.F. Zackay (ed.), High-Strength Materials, Wiley, New York, pp. 12–103, 1965.

    Google Scholar 

  4. Brewer, L.: Prediction of transition metal phase diagrams, J. Nuclear Materials 51 (1974) 2–11.

    Article  CAS  Google Scholar 

  5. Jaksic, M.M.: Advances in electrocatalysis for hydrogen evolution in the light of the Brewer-Engel valence-bond theory, J. Mol. Catalysis 38(1986) 161–202.

    Article  CAS  Google Scholar 

  6. Jaksic, M.M.: Brewer intermetallic phases as synergetic electrocatalysts for hydrogen evolution, Materials Chem. Phys. 22(1989)1–26.

    Article  CAS  Google Scholar 

  7. Jaksic, M.M., and Jaksic, J.M.: Fermi dynamics and some structural bonding aspects of electrocatalysis for hydrogen evolution, Electrochim. Acta 39 (1994) 1695–1714.

    Article  CAS  Google Scholar 

  8. Jaksic, M.M., and Krstajic, N.V., Electrocatalysis of hydrogen electrode reactions in the light of electronic density of states and structural bonding factors, in J.O’M. Bockris, B.E. Conway and R.E. White (eds.), Modern Aspects of Electrochemistry, to be published in 1998.

    Google Scholar 

  9. Allen, B.C.: The melting points, Trans. Metallurgical Soc. AIME 227 (1963) 1175–1183.

    CAS  Google Scholar 

  10. Methfessel, M., Hennig, D., and Scheffler, M.: Trends in the surface relaxations, surface energies, and work functions of the Ad transition metals, Phys. Rev. B 46 (1992) 4816–4829.

    Article  CAS  Google Scholar 

  11. Friedel, J., and Sayers, CM.: On the role of d-d electron correlations in the cohesion and ferromagnetism of transition metals, J. Physique 38 (1977) 697–705.

    Article  CAS  Google Scholar 

  12. C. Kittel, Introduction to Solid State Physics, sixth ed., Wiley, New York, 1986.

    Google Scholar 

  13. Parsons, R.: The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen, Trans. Faraday Soc. 54(1958) 1053–1063.

    Article  CAS  Google Scholar 

  14. Gerischer, H.: Mechanismus der elektrolitischen wasserstoffabscheidung und adsorptionsenergie von atomarem Wasserstoff, Bull. Soc. Chim. Belgrade 67 (1958) 506–527.

    Article  CAS  Google Scholar 

  15. Trasatti, S.: The work function in electrochemistry, in H. Gerischer and C.W. Tobias (eds.), Advances in Electrochemistry and Electrochemical Engineering, Wiley, New York, Vol. 10, pp. 213–321, 1977.

    Google Scholar 

  16. Trasatti, S.: Chemical and electrochemical surface reactivity, role of the competition between solvent and reaction intermediate adsorption, in W. E. O’Grady, P.H. Ross and F.G. Will (eds.), Proceedings of the Symposium on Electrocatalysis, The Electrochemical Society, Pennington, N.J., Vol. 82-2, pp. 73–91, 1982.

    Google Scholar 

  17. Ruetschi, P., and Delahay, P.: Influence of electrode material on oxygen overvoltage: A theoretical analysis, J. Chem. Physics 23 (1955) 556–560.

    Article  CAS  Google Scholar 

  18. Ruetschi, P., and Delahay, P.: Hydrogen overvoltage and electrode material. A theoretical analysis, J. Chem. Phys. 23 (1955) 195–199.

    Article  CAS  Google Scholar 

  19. Trasatti, S.: The concept and physical meaning of absolute potential, a reassessment, J. Electroanal. Chem. 139(1982) 1–13.

    Article  CAS  Google Scholar 

  20. Kita, H.: Periodic variation of exchange current density of hydrogen electrode reaction with atomic number and reaction mechanism, J. Electrochem. Soc. 113 (1966) 1095–1106.

    Article  CAS  Google Scholar 

  21. Brooman, E.W., and Kuhn, A.T.: Correlations between the rate of the hydrogen electrode reaction and the properties of Alloys, J. Electroanal. Chem. 49 (1974) 325–353.

    Article  CAS  Google Scholar 

  22. Brewer, L., and Wengert, P.R.: Transition metal alloys of extraordinary stability: An example of generalized Lewis-acid-base interactions in metallic systems. Metallurgical Trans. 4(1973)83–104.

    Article  CAS  Google Scholar 

  23. Bernauer, O., Topler, J., Noreus, D., Hempleman, R., and Richter, D.: Fundamentals and properties of some Ti/Mn based Laves phase hydrides, Int. J. Hydrogen Energy 14 (1989) 187–200.

    Article  CAS  Google Scholar 

  24. Krstajic, N.V., Grgur, B.N., Mladenovic, N.S., Vojnovic, M.V. and Jaksic, M.M.: The determination of kinetic parameters of the hydrogen evolution on Ti-Ni alloys by ac impedance, Electrochim. Acta 2(1997)323–330.

    Article  Google Scholar 

  25. Krstajic, N.V., Grgur, B.N., Zdujic, M., Vojnovic, M.V., and Jaksic, M.M.: Kinetic properties of the Ti-Ni intermetallic phases and alloys for hydrogen evolution, J. Alloys Comp., (1997) in press.

    Google Scholar 

  26. Notten, P.H.L. and Hokkeling, P.: Double-phase hydride forming compounds: A new class of highly electrocatalytic materials, J. Electrochem. Soc. 138 (1991)1877–1885.

    Article  CAS  Google Scholar 

  27. Preskorn, J.N., Chen. H., Chen, W., and Tornquist, W.J.: Electrochemical and infrared spectroscopic comparison of Pt, ZrPt3, and HfPt3 catalytic properties: Hydrogen evolution and CO adsorption, J. Phys. Chem. 96 (1992) 810–816.

    Article  Google Scholar 

  28. Büchner, H.: The hydrogen/hydride energy concept, in A.F. Andresen and A.J. Maeland (eds.), Hydrides for Energy Storage, Pergamon Press, Oxford, pp. 569–597, 1978.

    Google Scholar 

  29. Lacnjevac, C.M., and Jaksic, M.M.: Synergetic electrocatalytic effects of d-metals on the hydrogen evolution reaction in industrially important electrochemical processes, J. Res. Ins. Catalysis, Hokkaido Univ. 31 (1983) 7–34.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Milan, M., Nedeljko, V. (1998). Electrocatalytic and Hydridic Theory for Hydrogen Electrode Reactions and Prediction of Synergetic Catalysts in the Light of Fermi Dynamics and Structural Bonding Factors. In: Saetre, T.O. (eds) Hydrogen Power: Theoretical and Engineering Solutions. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9054-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9054-9_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5029-8

  • Online ISBN: 978-94-015-9054-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics