Skip to main content

Hydraulic architecture of Scots pine

  • Chapter
  • 77 Accesses

Part of the book series: Nutrients in Ecosystems ((NECO,volume 3))

Abstract

The hydraulic architecture of plants is controlled by internal and external variables like, inter alia, species (Huber, 1928; Zimmermann, 1978; Yang and Tyree, 1993), genotype (Neufeld et al., 1992), competition (Sellin, 1993), site fertility (Espinosa-Banclari et al., 1987; Long and Smith, 1989), stand management (Pothier and Margolis, 1988), climate (Whitehead et al., 1984; Mencuc-cini and Grace, 1995), and air pollution (Happla et al., 1986a,b; 1987a,b; Gruber, 1995). In the 1980s, concern about the decline of forests due to air pollution was widespread in the industrialised countries. Only rarely, though, have parameters of hydraulic architecture been included in studies on the causes of forest damage related to air pollution. Some investigations have focused on the relationship between crown transparency, then understood to be an indicator of tree vigour, and heartwood formation. In Scots pine, a lower sapwood/heartwood ratio was sometimes associated with high crown transparency (Happla and co-workers (1986a,b; 1987a,b), but see Bauch et al. (1986) and Bues and Schulz (1988)).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bauch J, Götsche-Kühn H, Rademacher P. 1986. Anatomische Untersuchungen am Holz von gesunden und kranken Bäumen aus Waldschadensgebieten. Holzforschung. 40, 281–288.

    Article  Google Scholar 

  • Bues CT, Schulz H. 1988. Festigkeit und Feuchtegehalt von Kiefernholz aus Waldschadensgebieten. Holz als Roh- und Werkstoff. 46, 41–45.

    Article  CAS  Google Scholar 

  • Edwards WRN, Jarvis PG. 1983. A method for measuring radial differences in water content of intact tree stems by attenuation of gamma radiation. Plant Cell Environ. 6, 255–260.

    Google Scholar 

  • Espinosa Bancalari MA, Perry DA, Marshall JD. 1987. Leaf area-sapwood area relationships in adjacent young Douglas-fir stands with different early growth rates. Can J For Res. 17, 174–180.

    Article  Google Scholar 

  • Granier A. 1985. Une nouvelle methode pour la mesure du flux de seve brute dans le tronc des arbres. Ann Sci For. 42(2), 193–200.

    Article  Google Scholar 

  • Gruber F. 1995. Splintermittlung und Splint-Nadelmasse-Beziehungen. AFZ. 15, 807–808.

    Google Scholar 

  • Habermehl A, Ridder H-W. 1978. Ein neues Verfahren zum Nachweis der Rotfaule. Proc 5th Intern Conf on Root and But Rot in Conifers, 340–347. Hess Forst Versuchsanstalt, Hann.-Münden.

    Google Scholar 

  • Habermehl A, Ridder H-W, Schmidt S. 1986. Ein mobiles Computertomographiegerät zur Untersuchung ortsfester Objekte. Kerntechnik. 48, 94–99.

    Google Scholar 

  • Hapla F. 1986. Holzfeuchtigkeit von Kiefern unterschiedlicher Immissionsschadstufen. Holz als Roh- und Werkstoff. 44, 432.

    Article  Google Scholar 

  • Hapla F. 1986. Splint- und Kernanteile an Kiefern unterschiedlicher Immissionsschadstufen. Holz als Roh- und Werkstoff. 361.

    Google Scholar 

  • Hapla F, Kottwitz K. 1987. Holzqualität von Kiefern aus einem Waldschadensgebiet. Holz-Zentralblatt. 95/96, 1333–1335.

    Google Scholar 

  • Hapla F, Knigge W, Rommerskirchen A. 1987. Physikalische Holzeigenschaften und Zuwachs von schadsymptomfreien und immissionsgeschädigten Kiefern. Forstarchiv. 58, 211–216.

    Google Scholar 

  • Huber B. 1928. Weitere quantitative Untersuchungen ueber das Wasserleitungssystem der Pflanzen. Jahrbuch Wiss Bot. 67, 877–959.

    Google Scholar 

  • Jones HG, Sutherland RA. 1991. Stomatal control of embolism. Plant Cell Environ. 14, 607–612.

    Article  Google Scholar 

  • Keane MG, Weetman GF. 1987 Leaf area- sapwood cross-sectional area relationship in repressed stands of lodgepole pine. Can J For Res. 17, 205–209.

    Article  Google Scholar 

  • Long JN, Smith FW 1989. Estimating leaf area of Abies lasiocarpa across ranges of stand density and site quality. Can J For Res. 19, 930–932.

    Article  Google Scholar 

  • Mencuccini M, Grace J. 1995. Climatic influences the leaf area/sapwood area ratio in Scots pine. Tree Physiol. 15, 1–10.

    Article  PubMed  Google Scholar 

  • Neufeld HS, Grantz DA, Meinzer FC, Goldstein G, Crisosto GM, Crisosto C. 1992. Genotypic variability in vulnerability of leaf xylem to cavitation in water-stressed and well-irrigated sugarcane. Plant Physiol. 100, 1020–1028.

    Article  PubMed  CAS  Google Scholar 

  • Pearson JA, Fahey TJ, Knight DH. 1984. Biomass and leaf area in contrasting lodgepole pine forests. Can J For Res. 14, 259–265.

    Article  Google Scholar 

  • Pothier D, Margolis HA, Waring RH. 1988. Patterns of change of saturated sapwood permeability and sapwood conductance with stand development. Can J For Res. 19, 432–439.

    Article  Google Scholar 

  • Rust S, Lüttschwager D, Hüttl RF. 1995. Transpiration and hydraulic conductivity in three Scots pine (Pinus sylvestris L.) stands with different air pollution histories. Water Air Soil Pollut. 85, 1677–1682.

    Article  CAS  Google Scholar 

  • Sellin AA. 1987. Hydraulic conductivity of the water transport system in Norway spruce. Fiziologiya Rastenii. 34(3), 545–553.

    Google Scholar 

  • Sellin AA. 1993. Resistance to water flow in xylem of Picea abies (L.) Karst, trees grown under contrasting light conditions. Trees. 7, 220–226.

    Article  Google Scholar 

  • Shelburne VB, Hedden RL, Allen RM. 1993. The effects of site, stand density, and sapwood permeability on the relationship between leaf area and sapwood area in loblolly pine (Pinus taeda L.). For Ecol Management. 58, 193–209.

    Article  Google Scholar 

  • Sperry JS, Donnelly JR, Tyree MT. 1988. A method for measuring hydraulic conductivity and embolism in xylem. Plant Cell Environ. 11, 35–40.

    Article  Google Scholar 

  • Tyree MT, Sinclair B, Lu P, Granier A. 1993. Whole shoot hydraulic resistance in Quercus species measured with a new high-pressure flowmeter. Annales des Sciences Forestieres. 50, 417–23.

    Article  Google Scholar 

  • Tyree MT, Patino S, Bennink J, Alexander J. 1995. Dynamic measurements of root hydraulic conductance using a high-pressure flowmeter in the laboratory and field. J Exp Bot. 46, 83–94.

    Article  CAS  Google Scholar 

  • Valinger E. 1993. Effects of thinning and nitrogen fertilization on growth of Scots pine trees: total annual biomass increment, needle efficiency, and aboveground allocation of biomass increment. Can J For Res. 23, 1639–1644.

    Article  CAS  Google Scholar 

  • Whitehead D, Edwards WRN, Jarvis PG. 1984. Conducting sapwood area, foliage area, and permeability in mature trees of Picea sitchensis and Pinus contorta. Can J For Res. 14, 940–947.

    Article  Google Scholar 

  • Yang S, Tyree MT. 1993. Hydraulic resistance in Acer saccharum shoots and its influence on leaf water potential and transpiration. Tree Physiol. 12, 231–42.

    Article  PubMed  Google Scholar 

  • Zimmermann MH. 1978. Hydraulic architecture of some diffuse-porous trees. Can J Bot. 56, 2286–2295.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rust, S., Lüttschwager, D., Hüttl, R.F. (1998). Hydraulic architecture of Scots pine. In: Hüttl, R.F., Bellmann, K. (eds) Changes of Atmospheric Chemistry and Effects on Forest Ecosystems. Nutrients in Ecosystems, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-9022-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-9022-8_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-5224-7

  • Online ISBN: 978-94-015-9022-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics