Echo Mapping of X-Ray Binaries and Active Galactic Nuclei

  • Keith Horne
Conference paper
Part of the Astrophysics and Space Science Library book series (ASSL, volume 218)


Echo Mapping exploits light travel time delays to resolve structures on micro-arcsecond scales in Active Galactic Nuclei (AGN) and X-ray Binaries (XRB). In these systems radiation from a compact variable source drives responses in the surrounding medium. We outline maximum entropy techniques used to find smooth delay maps that fit incomplete and noisy measurements of the driving and responding lightcurves. In AGNs, erratically variable ionizing flux from the nucleus drives emission-line responses in surrounding photo-ionized gas. The observed time delays reveal radial ionization structure on 1–100 light day scales, constrain the gas kinematics, and provide rough virial masses. In XRBs, time delays up to of order l0s arise as X-rays from the accreting neutron star or black hole are reprocessed to optical line and continuum radiation in the surrounding accretion flow and on the inward face the binary companion star. A wealth of information on the structure of the flow is coded in the way the delay distribution changes with phase as the binary rotates.


Black Hole Accretion Disk Active Galactic Nucleus Companion Star Roche Lobe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Done, C. Krolik, J. 1996, ApJ, 463, 144CrossRefGoogle Scholar
  2. Ferland, G. J., Peterson, B. M., Home, K., Welsh, W. F., Nahar, S. N. 1992, ApJ, 387, 95CrossRefGoogle Scholar
  3. Horne, K. 1994, in Reverberation Mapping of the Broad Line Region in Active Galactic Nuclei, ed. P.M.Gondhalekar, K.Horne, B.M.Peterson ( Astron.Soc.Pac: San Francisco ), 23Google Scholar
  4. Horne, K., Welsh, W. F. Peterson, B. M. 1991, ApJL, 367, L5CrossRefGoogle Scholar
  5. O’Brien, P. T., Goad, M. R., Gondhalekar, P. M. 1994, MNRAS, 268, 845Google Scholar
  6. Peterson, B. M., Ali, B., Horne, K., Bertram, R., Lame, N. J., Poggee, R. W., Wagner, M., R. 1993, ApJ, 402, 469CrossRefGoogle Scholar
  7. Perez, E., Robinson, A., de la Fuente, L. 1992, MNRAS, 256, 103Google Scholar
  8. Petro, L. D., Bradt, H. V., Kelley, R. L., Horne, K., Gomer, R. 1981, ApJL, 251, L7CrossRefGoogle Scholar
  9. Krolik, J. H., Horne, K., Kallman, T. R., Malkan, M. A., Edelson, R. A., Kriss, G. A. 1991, ApJ, 371, 541CrossRefGoogle Scholar
  10. Skilling, J. Bryan, R. K. 1984, MNRAS, 211, 111zbMATHGoogle Scholar
  11. Ulrich, M. H. Horne, K. 1996, MNRAS, 283, 748CrossRefGoogle Scholar
  12. Wanders, I. Horne, K. 1994, AA, 289, 76Google Scholar
  13. Wanders, I., Goad, M. R., Korista, K. T., Peterson, B. M., Horne, K., Ferland, G., Koratkar, A. P., Poggee, R. W., Shields, J. C. 1995, ApJL, 453, L87CrossRefGoogle Scholar
  14. Welsh, W. F. Home, K. 1991, ApJ, 379, 586CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • Keith Horne
    • 1
  1. 1.School of Physics and AstronomyUniversity of St.AndrewsScotlandUK

Personalised recommendations