Skip to main content

Part of the book series: Advances in Cellular and Molecular Biology of Plants ((CMBP,volume 4))

  • 781 Accesses

  • 62 Citations

Abstract

Seed maturation is a critical period of seed development during which many of the unique processes required for seed formation occur. The major events that characterize seed maturation include the arrest of embryo morphogenesis, the synthesis and accumulation of storage reserves, the acquisition of desiccation tolerance, the desiccation of seed and the accompanying induction of metabolic quiescence, and, in some species, the establishment of embryo dormancy. Although this period of seed development has been studied extensively at several levels, a foundation for understanding the processes that control seed maturation is just beginning to emerge. Information derived from studies of the regulation of seed protein genes, of the effects of the phytohormone abscisic acid on cultured embryos, of mutants defective in abscisic acid accumulation and perception, and of mutations that affect other aspects of seed development do not implicate a single master regulator of seed maturation but, rather, provide evidence that multiple regulatory pathways are each involved in controlling specific facets of seed maturation. Factors that have been identified as regulators of seed maturation include abscisic acid, the VIVIPAROUS1/ABA INSENSITIVE3 class of transcriptional regulatory proteins, and the products of the Arabidopsis LEAFY COTYLEDON genes. Coordination of the activities of these and, perhaps, other regulators ultimately underlies the processes that occur during seed maturation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Abbreviations

ABA:

abscisic acid

aba:

ABA accumulation

abi:

aba insensitive

emb:

embryo defective

fus:

fusca

lec:

leafy cotyledon

vp:

viviparous

References

  • Ackerson, R. C. (1984). Abscisic acid and precocious germination in soybeans. J. Exp. Bot. 35, 414–421.

    CAS  Google Scholar 

  • Ackerson, R. C. (1984). Regulation of soybean embryogenesis by abscisic acid. J. Exp. Bot. 34, 403–413.

    Google Scholar 

  • Adams, C. A., Fjerstad, M. C., and Rinne, R. W. (1983). Characteristics of soybean seed maturation: necessity for slow dehydration. Crop Sci. 23, 265–267.

    Google Scholar 

  • Barton, M. K., and Poethig, R. S. (1993). Formation of the shoot apical meristem in Arabidopsis thaliana: an analysis of development in the wild type and in the shoot meristemless mutant. Development 119, 823–831.

    Google Scholar 

  • Baumlein, H., Misera, S., Luerben, H., Kolle, K., Horstmann, C., Wobus, U., and Muller, A. J. (1994). The FUS3 gene of Arabidopsis thaliana is a regulator of gene expression during late embryogenesis. Plant J. 6, 379–387.

    Google Scholar 

  • Baumlein, H., Nagy, I., Villarroel, R., Inze, D., and Wobus, U. (1992). Cis-analysis of a seed protein gene promoter: the conservative RY repeat CATGCATG within the legumin box is essential for tissue-specific expression of a legumin gene. Plant J. 2, 233–239.

    CAS  PubMed  Google Scholar 

  • Baumlein, H., Wobus, U., Pustell, J., and Kafatos, F. C. (1986). The legumin gene family: structure of a B-type gene of Vicia faba and a possible legumin gene specific regulatory element. Nucl. Acids Res. 14, 2707–2720.

    CAS  PubMed  Google Scholar 

  • Berry, T., and Bewley, J. D. (1992). A role for the surrounding fruit tissues in preventing the germination of tomato Lycopersicon esculentum seeds: a consideration of the osmotic environment and abscisic acid. Plant Physiol. 100, 951–957.

    CAS  PubMed  Google Scholar 

  • Berry, T., and Bewley, J. D. (1991). Seeds of tomato (Lycopersicon esculentum Mill.) which develop in a fully hydrated environment in the fruit switch from a developmental to a germinative mode without a requirement for desiccation. Planta 186, 27–34.

    CAS  Google Scholar 

  • Bewley, J. D. (1995). Physiological aspects of desiccation tolerance: A retrospect. Int. J. Plant Sci. 156, 393–403.

    Google Scholar 

  • Bewley, J. D., and Black, M. (1995). Seeds. Physiology of Development and Germination. , Second Edition(New York: Plenum Press).

    Google Scholar 

  • Bewley, J. D., Kermode, A. R., and Misra, S. (1989). Desiccation and minimal drying treatments of seeds of castor bean and Phaseolus vulgaris which terminate development and promote germination cause changes in protein and messenger RNA synthesis. Ann. Bot. 63, 3–17.

    CAS  Google Scholar 

  • Bisgrove, S. R., Crouch, M. L., and Fernandez, D. E. (1995). Chimeric nature of precociously-germinating Brassica napus embryos: mRNA accumulation patterns. J. Exp. Bot. 46, 27–33.

    CAS  Google Scholar 

  • Black, M. (1991). Involvement of ABA in the physiology of developing and mature seeds. In Abscisic Acid: Physiology and Biochemistry, W. J. Davies and H. G. Jones, eds. (Oxford: Bios Scientific Publishers Ltd.), pp. 99–124.

    Google Scholar 

  • Bobb, A. J., Eiben, H. G., and Bustos, M. M. (1995). PvAlf, an embryo-specific acidic transcriptional activator enhances gene expression from phaseolin and phytohemagglutinin promoters. Plant J. 8, 331–343.

    CAS  PubMed  Google Scholar 

  • Boesewinkel, F. D., and Bouman, F. (1984). The seed: structure. In Embryology of Angiosperms, B. M. Johri, ed. (Berlin: Springer-Verlag), pp. 567–610.

    Google Scholar 

  • Bray, E. A., and Beachy, R. N. (1985). Regulation by ABA of β-conglycinin expression in cultured expression in developing soybean cotyledons. Plant Physiol. 79, 746–750.

    CAS  PubMed  Google Scholar 

  • Burow, M. D., Sen, P., Chlan, C. A., and Murai, N. (1992). Developmental control of the β-phaseolin gene requires positive, negative, and temporal seed-specific transcriptional regulatory elements and a negative element for stem and root expression. Plant J. 2, 537–548.

    CAS  Google Scholar 

  • Bustos, M. M., Begum, D., Kalkan, F. A., Battraw, M. J., and Hall, T. C. (1991). Positive and negative cis-acting DNA domains are required for spatial and temporal regulation of gene expression by a seed storage protein promoter. EMBO J. 10, 1469–1480.

    CAS  PubMed  Google Scholar 

  • Bustos, M. M., Guiltinan, M. J., Jordano, J., Begum, D., Kalkan, F. A., and Hall, T. C. (1989). Regulation of β-glucuronidase expression in transgenic tobacco plants by an A/T-rich, cis-acting sequence found upstream of a French bean β-phaseolin gene. Plant Cell 1, 839–854.

    CAS  PubMed  Google Scholar 

  • Butler, W. M., and Cuming, A. C. (1993). Differential molecular responses to abscisic acid and osmotic stress in viviparous maize embryos. Planta 189, 47–54.

    CAS  Google Scholar 

  • Castle, L. A., and Meinke, D. W. (1994). A FUSCA gene of Arabidopsis encodes a novel protein essential for plant development. Plant Cell 6, 25–41.

    CAS  PubMed  Google Scholar 

  • Chamberland, S., Daigle, N., and Bernier, F. (1992). The legumin boxes and the 3′ part of a soybean β-conglycinin promoter are involved in seed gene expression in transgenic tobacco plants. Plant Mol. Biol. 19, 937–949.

    CAS  PubMed  Google Scholar 

  • Chen, Z.-L., Pan, N.-S., and Beachy, R. N. (1988). A DNA sequence element that confers seed-specific enhancement to a constitutive promoter. EMBO J. 7, 297–302.

    CAS  PubMed  Google Scholar 

  • Chen, Z.-L., Schuler, M. A., and Beachy, R. N. (1986). Functional analysis of regulatory elements in a plant embryo-specific gene. Proc. Natl. Acad. Sci., USA 83, 8560–8564.

    CAS  PubMed  Google Scholar 

  • Chern, M.-S., Bobb, A. J., and Bustos, M. M. (1996). The regulator of MAT2 (ROM2) protein binds to early maturation promoters and represses PvALF-activated transcription. Plant Cell 8, 305–321.

    CAS  PubMed  Google Scholar 

  • Chlan, C. A., and Dure, L. I. (1983). Plant seed embryogenesis as a tool for molecular biology. Mol. Cell. Biochem. 55, 5–15.

    CAS  PubMed  Google Scholar 

  • Chrispeels, M. J., and Raikhel, N. V. (1991). Lectins: lectin genes and their role in plant defense. Plant Cell 3, 1–10.

    CAS  PubMed  Google Scholar 

  • Colot, V., Roberts, L. S., Kavanagh, T. A., Bevan, M. W., and Thompson, R. D. (1987). Localization of sequences in wheat endosperm protein genes which confer tissue-specific expression in tobacco. EMBO J. 6, 3559–3564.

    CAS  PubMed  Google Scholar 

  • Cornai, L., Dietrich, R. A., Maslyar, D. J., Baden, C. S., and Harada, J. J. (1989). Coordinate expression of transcriptionally regulated isocitrate lyase and malate synthase genes in Brassica napus L. Plant Cell 1, 293–300.

    Google Scholar 

  • Cornai, L., and Harada, J. J. (1990). Transcriptional activities in dry seed nuclei indicate the timing of the transition from embryogeny to germination. Proc. Natl. Acad. Sci., USA 87, 2671–2614.

    Google Scholar 

  • Conway, L. J., and Poethig, R. S. (1993). Heterochrony in plant development. Sem. Dev. Biol. 4, 65–72.

    Google Scholar 

  • Croissant-Sych, Y., and Okita, T. W. (1996). Identification of positive and negative regulatory cis-elements of the rice glutelin Gt3 promoter. Plant Sci. 116, 27–35.

    CAS  Google Scholar 

  • Crouch, M. L. (1987). Regulation of gene expression during seed development in flowering plants. In Developmental Biology: A Comprehensive Synthesis, L. W. Browder, ed. (New York: Plenum Press), pp. 367–404.

    Google Scholar 

  • Crouch, M. L., and Sussex, I. M. (1981). Development and storage-protein synthesis in Brassica napus L. embryos in vivo and in vitro. Planta 153, 64–74.

    CAS  Google Scholar 

  • da Silva Conceicao, A., and Krebbers, E. (1994). A cotyledon regulatory region is responsible for the different spatial expression patterns of Arabidopsis 2S albumin genes. Plant J. 5, 493–505.

    Google Scholar 

  • Dasgupta, J., and Bewley, J. D. (1982). Desiccation of axes of Phaseolus vulgaris during development causes a switch from a developmental pattern of protein synthesis to a germination pattern. Plant Physiol. 70, 1224–1227.

    CAS  PubMed  Google Scholar 

  • de Pater, S., Pham, K., Chua, N.-H., Memelink, J., and Kijne, J. (1993). A 22-bp fragment of the pea lectin promoter containing essential TGAC-like motifs confers seed-specific gene expression. Plant Cell 5, 877–886.

    PubMed  Google Scholar 

  • DeLisle, A. J., and Crouch, M. L. (1989). Seed storage protein transcription and mRNA levels in Brassica napus during development and in response to exogenous abscisic acid. Plant Physiol. 97, 617–623.

    Google Scholar 

  • DeLisle, A. J., and Ferl, R. J. (1990). Characterization of the Arabidopsis Adh G-box binding factor. Plant Cell 2, 547–558.

    CAS  PubMed  Google Scholar 

  • Devic, M., Albert, S., and Delseny, M. (1996). Induction and expression of seed-specific promoters in Arabidopsis embryo-defective mutants. Plant J. 9, 205–215.

    CAS  PubMed  Google Scholar 

  • Dietrich, R. A., Maslyar, D. J., Heupel, R. C., and Harada, J. J. (1989). Spatial patterns of gene expression in Brassica napus seedlings: identification of a cortex-specific gene and localization of messenger RNA encoding isocitrate lyase and a polypeptide homologous to proteinases. Plant Cell 1, 73–80.

    CAS  PubMed  Google Scholar 

  • Dietrich, R. A., Radke, S. E., and Harada, J. J. (1992). Downstream DNA sequences are required to activate a gene expressed in the root cortex of embryos and seedlings. Plant Cell 4, 1371–1382.

    CAS  PubMed  Google Scholar 

  • Dooner, H. K. (1985). Viviparous-1 mutations in maize conditions pleiotropic enzyme deficiencies in the aleurone. Plant Physiol. 77, 486–488.

    CAS  PubMed  Google Scholar 

  • Dooner, H. K., Robbins, T. P., and Jorgensen, R. A. (1992). Genetics and developmental control of anthocyanin biosynthesis. Annu. Rev. Genet. 25, 173–200.

    Google Scholar 

  • Dulson, J., Bewley, J. D., and Johnston, R. N. (1988). Abscisic acid is an endogenous inhibitor in the regulation of mannanase production in isolated lettuce (Lactuca sativa cv Grand Rapids) endosperms. Plant Physiol. 87, 660–666.

    CAS  PubMed  Google Scholar 

  • Dure, L. I. (1985). Embryogenesis and gene expression during seed formation. Oxford Surv. Plant Mol. Cell Biol. 2, 179–197.

    CAS  Google Scholar 

  • Dure, L. I., and Galau, G. A. (1981). Developmental biochemistry of cottonseed embryogenesis and germination. Plant Physiol. 68, 187–194.

    CAS  PubMed  Google Scholar 

  • Dure, L. I., Greenway, S. C., and Galau, G. A. (1981). Developmental biochemistry of cottonseed embryogenesis and germination: changing messenger ribonucleic acid populations as shown by in vitro and in vivo protein synthesis. Biochem. 20, 4162–4168.

    CAS  Google Scholar 

  • Eisenberg, A. J., and Mascarenhas, J. P. (1985). Abscisic acid and the regulation of synthesis of specific seed proteins and their messenger RNAs during culture of soybean embryos. Planta 166, 505–514.

    CAS  Google Scholar 

  • Fernandez, D. E., Turner, F. R., and Crouch, M. L. (1991). In situ localization of storage protein mRNAs in developing meristems of Brassica napus embryos. Development 111, 299–313.

    CAS  PubMed  Google Scholar 

  • Finkelstein, R. R. (1993). Abscisic acid-insensitive mutations provide evidence for stage-specific signal pathways regulating expression of an Arabidopsis late embryogenesis-abundant lea gene. Mol. Gen. Genet. 238, 401–408.

    CAS  PubMed  Google Scholar 

  • Finkelstein, R. R. (1994). Mutations at two new Arabidopsis ABA response loci are smilar to the abi3 mutations. Plant J. 5, 765–771.

    Google Scholar 

  • Finkelstein, R. R., and Crouch, M. L. (1984). Precociously germinating rapeseed embryos retain characteristics of embryogeny. Planta 162, 125–131.

    CAS  Google Scholar 

  • Finkelstein, R. R., and Crouch, M. L. (1986). Rapeseed embryo development in culture on high osmoticum is similar to that in seeds. Plant Physiol. 81, 907–912.

    CAS  PubMed  Google Scholar 

  • Finkelstein, R. R., and Somerville, C. R. (1990). Three classes of abscisic acid (ABA)- insensitive mutations of Arabidopsis define genes that control overlapping subsets of ABA responses. Plant Physiol. 94, 1172–1179.

    CAS  PubMed  Google Scholar 

  • Finkelstein, R. R., Tenbarge, K. M., Shumway, J. E., and Crouch, M. L. (1985). Role of ABA in maturation of rapeseed embryos. Plant Physiol. 78, 630–636.

    CAS  PubMed  Google Scholar 

  • Fong, F., Smith, J. D., and Koehler, D. E. (1983). Early events in maize seed development. l-Methyl-3-phenyl-5-(3-[trifluoromethyl]phenyl)-4–1(1 H)-pyridinone induction of vivipary. Plant Physiol. 73, 899–901.

    CAS  PubMed  Google Scholar 

  • Galau, G. A., Bijaisoradat, N., and Hughes, D. W. (1987). Accumulation kinetics of cotton late embryogenesis-abundant mRNAs and storage protein mRNAs: coordinate regulation during embryogenesis and the role of abscisic acid. Dev. Biol. 123, 198–212.

    CAS  PubMed  Google Scholar 

  • Galau, G. A., and Dure, L. I. (1981). Developmental biochemistry of cottonseed embryo-genesis and germination: Changing messenger ribonucleic acid populations as shown by reciprocal heterologous complementary deoxyribonucleic acid-messenger ribonucleic acid hybridization. Biochemistry 20, 4169–4178.

    CAS  PubMed  Google Scholar 

  • Galau, G. A., Hughes, D. W., and Dure, L. I. (1986). Abscisic acid induction of cloned cotton late embryogenesis-abundant (Lea) mRNAs. Plant Mol. Biol. 7, 155–170.

    CAS  Google Scholar 

  • Galau, G. A., Jakobsen, K. S., and Hughes, D. W. (1991). The controls of late dicot embryo-genesis and early germination. Physiol. Plant. 81, 280–288.

    CAS  Google Scholar 

  • Gatehouse, J. A., Evans, I. M., Croy, R. R. D., and Boulter, D. (1986). Differential expression of genes during legume seed development. Phil. Trans. R. Soc. Lond. B 314, 367–384.

    CAS  Google Scholar 

  • Gifford, E. M., and Foster, A. S. (1989). Morphology and Evolution of Vascular Plants, Third Edition (New York: W.H. Freeman and Company).

    Google Scholar 

  • Giraudat, J., Hauge, B. M., Valon, C., Smalle, J., Parcy, F., and Goodman, H. M. (1992). Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell 4, 1251–1261.

    CAS  PubMed  Google Scholar 

  • Giraudat, J., Parcy, F., Bertauche, N., Gosti, F., Leung, J., Morris, P. C., Bouvier-Durand, M., and Vartanian, N. (1994). Current advances in abscisic acid action and signalling. Plant Mol. Biol. 26, 1557–1577.

    CAS  PubMed  Google Scholar 

  • Giuliano, G., Pichersky, E., Malik, V.S., Timko, M. P., Scolnik, P. A., and Cashmore, A. R. (1988). An evolutionarily conserved protein binding sequence upstream of a plant light-regulated gene. Proc. Natl. Acad. Sci. USA 85, 7089–7093.

    CAS  PubMed  Google Scholar 

  • Goldberg, R. B., Barker, S. J., and Perez-Grau, L. (1989). Regulation of gene expression during plant embryogenesis. Cell 56, 149–160.

    CAS  PubMed  Google Scholar 

  • Goldberg, R. B., De Paiva, G., and Yadegari, R. (1994). Plant embryogenesis: zygote to seed. Science 266, 605–614.

    CAS  PubMed  Google Scholar 

  • Goldberg, R. B., Hoschek, G., Tarn, S. H., Ditta, G. S., and Breidenbach, R. W. (1981). Abundance, diversity, and regulation of mRNA sequence sets in soybean embryogenesis. Dev. Biol. 83, 201–217.

    CAS  PubMed  Google Scholar 

  • Goupil, P., Hatzopoulos, P., Franz, G., Hempel, F. D., You, R., and Sung, Z. R. (1992). Transcriptional regulation of a seed-specific carrot gene, DC8. . Plant Mol. Biol. 18, 1049–1063.

    CAS  PubMed  Google Scholar 

  • Groot, S. P. C., and Karssen, C. M. (1992). Dormancy and germination of abscisic acid deficient tomato seeds: Studies with the sitiens mutant. Plant Physiol. 99, 952–958.

    CAS  PubMed  Google Scholar 

  • Guiltinan, M. J., Marcotte, W. R. J., and Quatrano, R. S. (1990). A plant leucine zipper protein that recognizes an abscisic acid response element. Science 250, 267–271.

    CAS  PubMed  Google Scholar 

  • Halford, N. G., Forde, J., Shewry, P. R., and Kreis, M. (1989). Functional analysis of the upstream regions of a silent and an expressed member of a family of wheat seed protein genes in transgenic tobacco. Plant Sci. 62, 207–216.

    CAS  Google Scholar 

  • Harada, J. J., Baden, C. S., and Cornai, L. (1988). Spatially regulated genes expressed during seed germination and postgerminative development are activated during embryogeny. Mol. Gen. Genet. 212, 466–473.

    CAS  Google Scholar 

  • Harada, J. J., DeLisle, A. J., Baden, C. S., and Crouch, M. L. (1989). Unusual sequence of an abscisic acid-inducible mRNA which accumulates late in Brassica napus seed development. . Plant Mol. Biol. 12, 395–402.

    CAS  Google Scholar 

  • Harada, J. J., Dietrich, R. A., Cornai, L., and Baden, C. S. (1988). Regulation of gene expression during seed germination and postgerminative development. In Plant Gene Research, Volume 5, Temporal and Spatial Regulation of Plant Genes, D. P. S. Verma and R. B. Goldberg, eds. (New York: Springer-Verlag), pp. 26–39.

    Google Scholar 

  • Hartings, H., Maddaloni, M., Lazzaroni, N., Di Fonzo, N., Motto, M., Salamini, F., and Thompson, R. (1989). The 02 gene which regulates zein deposition in maize endosperm encodes a protein with structural homologies to transcriptional activators. EMBO J. 8, 2795–2801.

    CAS  PubMed  Google Scholar 

  • Hattori, T., Terada, T., and Hamasuna, S. T. (1994). Sequence and functional analyses of the rice gene homologous to the maize Vpl. Plant Mol. Biol. 24, 805–810.

    CAS  Google Scholar 

  • Hattori, T., Terada, T., and Hamasuna, S. (1995). Regulation of the Osem gene by abscisic acid and the transcriptional activator VP1: analysis of cis-acting promoter elements required for regulation by abscisic acid and VP1. Plant J. 7, 913–925.

    CAS  PubMed  Google Scholar 

  • Hattori, T., Vasil, V., Rosenkrans, L., Hannah, L. C., McCarty, D. R., and Vasil, I. K. (1992). The Viviparous-1 gene and abscisic acid activate the C1 regulatory gene for anthocyanin biosynthesis during seed maturation in maize. Genes Dev. 6, 609–618.

    CAS  PubMed  Google Scholar 

  • Hetherington, A. M., and Quatrano, R. S. (1991). Tansley review No. 31. Mechanisms of action of abscisic acid at the cellular level. New Phytol. 119, 9–32.

    CAS  Google Scholar 

  • Hilhorst, H. W. M. (1995). A critical update on seed dormancy. I. Primary dormancy. Seed Sci. Res. 5, 61–73.

    CAS  Google Scholar 

  • Hilhorst, H. W. M., and Karssen, C. M. (1992). Seed dormancy and germination: the role of abscisic and gibberellins and the importance of hormone mutants. Plant Growth Reg. 11, 225–238.

    CAS  Google Scholar 

  • Hill, A., Nantel, A., Rock, C. D., and Quatrano, R. S. (1996). A conserved domain of the Viviparous-1 gene product enhances the DNA binding activity of the bZIP protein EmBP-1 and other transcription factors. J. Biol. Chem. 271, 3366–3374.

    CAS  PubMed  Google Scholar 

  • Hoecker, U., Vasil, I. K., and McCarty, D. R. (1995). Integrated control of seed maturation and germination programs by activator and repressor functions of Viviparous-1 of maize. Genes Dev. 9, 2459–2469.

    CAS  PubMed  Google Scholar 

  • Hsu, F. C. (1979). Abscisic acid accumulation in developing seeds of Phaseolus vulgaris L. Plant Physiol. 63, 552–556.

    CAS  PubMed  Google Scholar 

  • Hughes, D. W., and Galau, G. A. (1991). Developmental and environmental induction of Lea and LeaA mRNAs and the postabscission program during embryo culture. Plant Cell 3, 605–618.

    CAS  PubMed  Google Scholar 

  • Hughes, D. W., and Galau, G. A. (1989). Temporally modular gene expression during cotyledon development. Genes Dev. 3, 358–369.

    CAS  PubMed  Google Scholar 

  • Izawa, T., Foster, R., and Chua, N.-H. (1993). Plant bZIP protein DNA binding specificity. J. Mol. Biol. 230, 1131–1144.

    CAS  PubMed  Google Scholar 

  • Jacobsen, J. V., and Chandler, P. M. (1987). Gibberellin and abscisic acid in germinating cereals. In Plant Hormones and their Role in Plant Growth and Development, P. J. Davies, ed. (Dordrecht: Martinus Nijhoff), pp. 164–193.

    Google Scholar 

  • Jakobsen, K. S., Hughes, D. W., and Galau, G. A. (1994). Simultaneous induction of postabscission and germination mRNAs in cultured dicotyledonous embryos. Planta 192, 384–394.

    CAS  PubMed  Google Scholar 

  • Jiang, L., Downing, W. L., Baszczynski, C. L., and Kermode, A. R. (1995). The 5′ flanking regions of vicilin and napin storage protein genes are down-regulated by desiccation in transgenic tobacco. Plant Physiol. 107, 1439–1449.

    CAS  PubMed  Google Scholar 

  • Jofuku, K. D., Okamuro, J. K., and Goldberg, R. B. (1987). Interaction of an embryo DNA binding protein with a soybean lectin gene upstream region. Nature 328, 734–737.

    CAS  PubMed  Google Scholar 

  • Jordano, J., Almoguera, C., and Thomas, T. L. (1989). A sunflower helianthinin gene upstream ensemble contains an enhancer and sites of nuclear protein interaction. Plant Cell 7, 855–866.

    Google Scholar 

  • Juergens, G. (1994). Embryonic pattern formation in flowering plants. Annu. Rev. Genet. 28, 351–371.

    Google Scholar 

  • Karssen, C. M. (1995). Hormonal regulation of seed development, dormancy, and germination studied by genetic control. In Seed Development and Germination, J. Kigel and G. Galili, eds. (New York: Marcel Dekker, Inc.), pp. 333–350.

    Google Scholar 

  • Karssen, C. M., Brinkhorst-van der Swan, D. L. C., Breekland, A. E., and Koornneef, M. (1983). Induction of dormancy during seed development by endogenous abscisic acid: studies on abscisic acid deficient genotypes of Arabidopsis thaliana (L.) Heynh. Planta 157, 158–165.

    CAS  Google Scholar 

  • Keith, K., Kraml, M., Dengler, N. G., and McCourt, P. (1994). fusca3: a heterochronic mutation affecting late embryo development in Arabidopsis. Plant Cell 6, 589–600.

    CAS  PubMed  Google Scholar 

  • Kermode, A. R. (1995). Regulatory mechanisms in the transition from seed development to germination: interactions between the embryo and the seed environment. In Seed Development and Germination, J. Kigel and G. Galili, eds. (New York: Marcel Dekker, Inc.), pp. 273–332.

    Google Scholar 

  • Kermode, A. R. (1990). Regulatory mechanisms involved in the transition from seed development to germination. Crit. Rev. Plant. Sci. 9, 155–195.

    CAS  Google Scholar 

  • Kermode, A. R., and Bewley, J. D. (1985). The role of maturation drying in the transition from seed development to germination. I. Acquisition of desiccation-tolerance and germinability during development of Ricinus communis L. seeds. J. Exp. Bot. 33, 1906–1915.

    Google Scholar 

  • Kermode, A. R., and Bewley, J. D. (1985). The role of maturation drying in the transition from seed development to germination. II. Post-germinative enzyme production and soluble protein synthetic pattern changes within the endosperm of Ricinus communis L. seeds. J. Exp. Bot. 33, 1916–1927.

    Google Scholar 

  • Kermode, A. R., and Bewley, J. D. (1986). The role of maturation drying in the transition from seed development to germination. IV. Protein synthesis and enzyme activity changes within the cotyledons of Ricinus communis L. seeds. J. Exp. Bot. 37, 1887–1898.

    CAS  Google Scholar 

  • Kermode, A. R., and Bewley, J. D. (1988). The role of maturation drying in the transition from seed development to germination. V. Responses of the immature castor bean embryo to isolation from the whole seed: a comparison with premature desiccation. J. Exp. Bot. 39, 487–498.

    CAS  Google Scholar 

  • Kermode, A. R., Bewley, J. D., Dasgupta, J., and Misra, S. (1986). The transition from seed development to germination: a key role for desiccation?. Hort. Sci. 21, 1113–1118.

    CAS  Google Scholar 

  • Kermode, A. R., Dumbroff, E. B., and Bewley, J. D. (1989). The role of maturation drying in the transition from seed development to germination. VII. Effects of partial and complete desiccation on abscisic acid levels and sensitivity in Ricinus communis L. seeds. J. Exp. Bot. 40, 303–313.

    CAS  Google Scholar 

  • King, R. W. (1976). Abscisic acid in developing wheat grains and its relationship to grain growth and maturation. Planta 132, 43–51.

    CAS  Google Scholar 

  • Kodrzycki, R., Boston, R. S., and Larkins, B. A. (1989). The opaque-2 mutation of maize differentially reduces zein gene transcription. Plant Cell 1, 105–114.

    CAS  PubMed  Google Scholar 

  • Koltunow, A. M. (1993). Apomixis: embryo sacs and embryos formed without meiosis or fertilization in ovules. Plant Cell 5, 1425–1437.

    PubMed  Google Scholar 

  • Koornneef, M., Hanhart, C. J., Hilhorst, H. W. M., and Karssen, C. M. (1989). In vivo inhibition of seed development and reserve protein accumulation in recombinants of abscisic acid biosynthesis and responsiveness mutants in Arabidopsis thaliana. Plant Physiol. 90, 463–469.

    CAS  PubMed  Google Scholar 

  • Koornneef, M., Jorna, M. L., Brinkhorst-van der Swan, D. L. C., and Karssen, C. M. (1982). The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in non-germinating gibberellin sensitive lines of Arabidopsis thaliana (L.) Heynh. Theor. Appl. Genet. 61, 385–393.

    CAS  Google Scholar 

  • Koornneef, M., and Karssen, C. M. (1994). Seed dormancy and germination. In Arabidopsis, E. M. Meyerowitz and C. R. Sommerville, eds. (Cold Spring Harbor: Cold Spring Harbor Laboratory Press), pp. 313–334.

    Google Scholar 

  • Koornneef, M., Reuling, G., and Karssen, C. M. (1984). The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiol. Plant 61, 377–383.

    CAS  Google Scholar 

  • Kriz, A. R., Wallace, M. S., and Paiva, R. (1990). Globulin gene expression in embryos of maize viviparous mutants: Evidence for regulation of the Glb1 gene by ABA.. Plant Physiol. 92, 538–542.

    CAS  PubMed  Google Scholar 

  • Lam, E., and Chua, N. H. (1991). Tetramer of a 21-base pair synthetic element confers seed expression and transcriptional enhancement in response to water stress and abscisic acid. J. Biol. Chem. 266, 17131–17135.

    CAS  PubMed  Google Scholar 

  • Larkins, J. C., Oppenheimer, D.G., Lloyd, A.M., Paparozzi, E.T., and Marks, M.D. (1994). Roles of the GLABROUS1 and TRANSPARENT TESTA GLABRA genes in Arabidopsis trichome development. Plant Cell 6, 1065–1076.

    Google Scholar 

  • Leon-Kloosterziel, K. M., van de Bunt, G. A., Zeevaart, J. A. D., and Koornneef, M. (1996). Arabidopsis mutants with a reduced seed dormancy. Plant Physiol. 110, 233–240.

    CAS  PubMed  Google Scholar 

  • Lessard, P. A., Allen, R. D., Fujiwara, T., Bernier, F., and Beachy, R. N. (1993). Upstream regulatory sequences from two β-conglycinin genes. . Plant Mol. Biol. 22, 873–885.

    CAS  PubMed  Google Scholar 

  • Lohmer, S., Maddaloni, M., Motto, M., Di Fonzo, N., Hartings, H., Salamini, F., and Thompson, R. D. (1991). The maize regulatory locus Opaque-2 encodes a DNA-binding protein which activates the transcription of the b-32 gene. EMBO J. 10, 617–624.

    CAS  PubMed  Google Scholar 

  • Long, J. A., Moan, E. I., Medford, J. I., and Barton, M. K. (1996). A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379, 66–69.

    CAS  PubMed  Google Scholar 

  • Long, S. R., Dale, R. M. K., and Sussex, I. M. (1981). Maturation and germination of Phaseolus vulgaris embryonic axes in culture. Planta 153, 405–415.

    CAS  Google Scholar 

  • Lopes, M. A., and Larkins, B. A. (1993). Endosperm origin, development, and function. Plant Cell 5, 1383–1399.

    CAS  PubMed  Google Scholar 

  • Mansfield, S. G., and Briarty, L. G. (1992). Cotyledon cell development in Arabidopsis thaliana during reserve deposition. Can. J. Bot. 70, 151–164.

    Google Scholar 

  • Marcotte, W. R. J., Russell, S. H., and Quatrano, R. S. (1989). Abscisic acid-responsive sequences from the Em gene of wheat. Plant Cell 1, 969–976.

    CAS  PubMed  Google Scholar 

  • Mayer, U., Torres Ruiz, R. A. T., Berleth, T., Misera, S., and Jurgens, G. (1991). Mutations affecting body organization in the Arabidopsis embryo. Nature 353, 402–407.

    Google Scholar 

  • McCarty, D. R. (1995). Genetic control and integration of maturation and germination pathways in seed development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 71–93.

    CAS  Google Scholar 

  • McCarty, D. R., Carson, C. B., Lazar, M., and Simonds, S. C. (1989). Transposable element-induced mutations of the viviparous-1 gene in maize. Dev. Genet. 10, 473–481.

    CAS  Google Scholar 

  • McCarty, D. R., Carson, C. B., Stinard, P. S., and Robertson, D. S. (1989). Molecular analysis of viviparous-1: an abscisic acid-insensitive mutant maize. Plant Cell 1, 523–532.

    CAS  PubMed  Google Scholar 

  • McCarty, D. R., Hattori, T., Carson, C. B., Vasil, V., Lazar, M., and Vasil, I. K. (1991). The viviparous-1 developmental gene of maize encodes a novel transcriptional activator. Cell 66, 895–906.

    CAS  PubMed  Google Scholar 

  • Medford, J. I. (1992). Vegetative apical meristems. Plant Cell 4, 1029–1039.

    PubMed  Google Scholar 

  • Meinke, D. W. (1986). Embryo-lethal mutants and the study of plant embryo development. Oxford Surv. . Plant Mol. Cell Biol. 3, 122–165.

    Google Scholar 

  • Meinke, D. W. (1992). A homoeotic mutant of Arabidopsis thaliana with leafy cotyledons. Science 258, 1647–1650.

    CAS  PubMed  Google Scholar 

  • Meinke, D. W. (1995). Molecular genetics of plant embryogenesis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 46, 369–394.

    CAS  Google Scholar 

  • Meinke, D. W., Franzmann, L. H., Nickle, T. C., and Yeung, E. C. (1994). leafy cotyledon mutants of Arabidopsis. Plant Cell 6, 1049–1064.

    CAS  PubMed  Google Scholar 

  • Meinke, D. W., and Yeung, E. C. (1993). Embryogenesis in angiosperms: development of the suspensor. Plant Cell 5, 1371–1381.

    PubMed  Google Scholar 

  • Mermod, N., O. Neill, E. A., Kelly, T. J., and Tjian, R. (1989). The proline-rich transcriptional activator of CTF/NF-1 is distinct from the replication and DNA binding domain. Cell 58, 741–754.

    CAS  PubMed  Google Scholar 

  • Misera, S., Muller, A. J., Weiland-Heidecker, U., and Jurgens, G. (1994). The FUSCA genes of Arabidopsis: negative regulators of light responses. Mol. Gen. Genet. 244, 242–252.

    CAS  PubMed  Google Scholar 

  • Misra, S., and Bewley, J. D. (1985). Reprogramming of protein synthesis from a developmental to a germinative mode induced by desiccation of the axes of Phaseolus vulgaris. Plant Physiol. 78, 876–882.

    CAS  PubMed  Google Scholar 

  • Morris, P. C., Kumar, A., Bowles, D. J., and Cuming, A. C. (1990). Osmotic stress and abscisic acid induc expression of the wheat Em genes. Eur. J. Biochem. 190, 625–630.

    CAS  PubMed  Google Scholar 

  • Morton, R. L., Quiggin, D., and Higgins, T. J. V. (1995). Regulation of seed storage protein gene expression. In Seed Development and Germination, J. Kigel and G. Galili, eds. (New York: Marcel Dekker, Inc.), pp. 103–138.

    Google Scholar 

  • Motto, M., Maddaloni, M., Ponziani, G., Brembilla, M., Marotta, R., Di Fonza, N., Soave, C., Thompson, R., and Salamini, F. (1988). Molecular cloning of the o2-m5 allele of Zea mays using transposon marking. Mol. Gen. Genet. 212, 488–494.

    CAS  Google Scholar 

  • Mueller, M., Muth, J. R., Gallusci, P., Knudsen, S., Maddaloni, M., Motto, M., Schmitz, D., Sorensen, M. B., Salamini, F., von Wettstein, D., and Thompson, R. D. (1995). Regulation of storage protein synthesis in cereal seeds: developmental and nutritional aspects. J. Plant Physiol. 145, 606–613.

    CAS  Google Scholar 

  • Mundy, J., Yamaguchi-Shinozaki, K., and Chua, H.-H. (1990). Nuclear proteins bind conserved elements in the abscisic acid-responisive promoter of a rice rab gene. Proc. Natl. Acad. Sci. USA 87, 1406–1410.

    CAS  PubMed  Google Scholar 

  • Nambara, E., Keith, K., McCourt, P., and Naito, S. (1995). A regulatory role for the ABB gene in the establishment of embryo maturation in Arabidopsis thaliana. Development 121, 629–636.

    CAS  Google Scholar 

  • Nambara, E., Naito, S., and McCourt, P. (1992). A mutant of Arabidopsis which is defective in seed development and storage protein accumulation is a new abi3 allele. Plant J. 2, 435–441.

    CAS  Google Scholar 

  • Neill, S. J., Horgan, R., and Parry, A. D. (1986). The carotenoid and abscisic acid content of viviparous kernels and seedlings of Zea mays L. Planta 169, 87–96.

    CAS  Google Scholar 

  • Neill, S. J., Horgan, R., and Rees, A. F. (1987). Seed development and vivipary in Zea mays L. Planta 169, 358–364.

    Google Scholar 

  • Nunberg, A. N., Li, Z., Bogue, M. A., Vivekananda, J., Reddy, A. S., and Thomas, T. L. (1994). Developmental and hormonal regulation of sunflower helianthinin genes: proximal promoter sequences confer regionalized seed expression. Plant Cell 6, 473–486.

    CAS  PubMed  Google Scholar 

  • Nunberg, A. N., Li, Z., Chung, H.-J., Reddy, A. S., and Thomas, T. L. (1995). Proximal promoter sequences of sunflower helianthinin genes confer regionalized seed-specific expression. J. Plant Physiol. 145, 600–605.

    CAS  Google Scholar 

  • Oeda, K., Salinas, J., and Chua, N.-H. (1991). A tobacco bZIP transcription activator (TAF-1) binds to a G-box-like motif conserved in plant genes. EMBO J. 10, 1793–1802.

    CAS  PubMed  Google Scholar 

  • Oishi, M. Y., and Bewley, J. D. (1992). Premature drying, fluridone-treatment, and embryo isolation during development of maize kernels (Zea mays L.) induce germination, but the protein synthetic responses are different. Potential regulation of germination ad protein synthesis by abscisic acid. J. Exp. Bot. 43, 759–767.

    CAS  Google Scholar 

  • Oliver, M. J., Armstrong, J., and Bewley, J. D. (1993). Desiccation and the control of expression of β-phaseolin in transgenic tobacco seeds. J. Exp. Bot. 44, 1239–1244.

    CAS  Google Scholar 

  • Olsen, O.-A., Potter, R. H., and Kalla, R. (1992). Histo-differentiation and molecular biology of developing cereal endosperm. Seed Sci. Res. 2, 117–131.

    Google Scholar 

  • Paiva, R., and Kriz, A. L. (1994). Effect of abscisic acid on embryo-specific gene expression during normal and precocious germination in normal and viviparous maize (Zea mays) embryos. Planta 192, 332–339.

    CAS  Google Scholar 

  • Parcy, F., Valon, C., Raynal, M., Gaubier-Comella, P., Delseny, M., and Giraudat, J. (1994). Regulation of gene expression programs during Arabidopsis seed development: roles of the ABI3 locus and of endogenous abscisic acid. Plant Cell 6, 1567–1582.

    CAS  PubMed  Google Scholar 

  • Perez-Grau, L., and Goldberg, R. B. (1989). Soybean seed protein genes are regulated spatially during embryogenesis. Plant Cell 1, 1095–1109.

    CAS  PubMed  Google Scholar 

  • Pernollet, J. C., Vailant, V. (1984). Characterization and complexity of wheat developing endosperm mRNAs. Plant Physiol. 76, 187–190.

    CAS  PubMed  Google Scholar 

  • Pla, M., Gomez, J., Goday, A., and Pages, M. (1991). Regulation of the abscisic acid-responsive gene rab28 in maize viviparous mutants. Mol. Gen. Genet. 230, 394–400.

    CAS  PubMed  Google Scholar 

  • Pla, M., Vilardell, J., Guiltinan, M. J., Marcotte, W. R., Niogret, M. F., Quatrano, R. S., and Pages, M. (1993). The cis-regulatory element CCACGTGG is involved in ABA and water-stress responses of the maize gene Rab-28. . Plant Mol. Biol. 21, 259–266.

    CAS  PubMed  Google Scholar 

  • Prevost, I., and Le Page-Degivry, M. T. (1985). Inverse correlation between ABA content and germinability throughout the maturation and the in vitro culture of the embryo of Phaseolus vulgaris. J. Exp. Bot. 36, 1457–1464.

    CAS  Google Scholar 

  • Pysh, L. D., Aukerman, M. J., and Schmidt, R. J. (1993). OHP1: a maize basic domain/leucine zipper protein that interacts with Opaque2. Plant Cell 5, 227–236.

    CAS  PubMed  Google Scholar 

  • Quatrano, R. S. (1986). Regulation of gene expression by abscisic acid during angiosperm embryo development. Oxford Surv. . Plant Mol. Cell Bio. 3, 467–477.

    CAS  Google Scholar 

  • Quatrano, R. S., Marcotte, W. R. J., and Guitinan, M. (1993). Regulation of gene expression by abscisic acid. In Control of Plant Gene Expression, D. P. S. Verma, ed. (Boca Raton: CRC Press, Inc.), pp. 69–90.

    Google Scholar 

  • Quebedeaux, B., Sweetser, P. B., and Roswell, J. C. (1976). Abscisic acid levels in soybean reproductive structures during development. Plant Physiol. 58, 363–366.

    CAS  PubMed  Google Scholar 

  • Raskin, I., and Ladyman, J. A. R. (1988). Isolation and characterization of a barley mutant with abscisic-acid-insensitive stornata. Planta 173, 73–78.

    Google Scholar 

  • Rivin, C. J., and Grudt, T. (1991). Abscisic acid and the developmental regulation of embryo storage proteins in maize. Plant Physiol. 95, 358–365.

    CAS  PubMed  Google Scholar 

  • Roberts, J. K., Desimone, N. A., Lingle, W. L., and Dure, L. I. (1993). Cellular concentrations and uniformity of cell-type accumulation of two Lea proteins in cotton embryos. Plant Cell 5, 769–780.

    CAS  PubMed  Google Scholar 

  • Robertson, D. S. (1955). The genetics of vivipary in maize. Genetics 40, 745–760.

    CAS  PubMed  Google Scholar 

  • Robertson, D. S. (1952). The genotype of the endosperm and embryo as it influences vivipary in maize. Proc. Natl. Acad. Sci. USA 38, 580–583.

    CAS  PubMed  Google Scholar 

  • Robichaud, C., and Sussex, I. M. (1986). The response of viviparous-1 and wild-type embryos of Zea mays to culture in the presence of abscisic acid. J. Plant Physiol. 126, 235–242.

    CAS  Google Scholar 

  • Robichaud, C. S., and Sussex, I. M. (1987). The uptake and metabolism of 2[carbon-14] ABA by excised wild type and Viviparous-1 embryos of Zea-Mays L. J. Plant Physiol. 130, 181–188.

    CAS  Google Scholar 

  • Rosenberg, L. A., and Rinne, R. W. (1986). Moisture loss as a prerequisite for seedling growth in soybean seeds (Glycine max L. Merr.). J. Exp. Bot. 37, 1663–1674.

    CAS  Google Scholar 

  • Rosenberg, L. A., and Rinne, R. W. (1988). Protein synthesis during natural and precocious soybean seed (Glycine max L. Merr.) maturation. Plant Physiol. 87, 474–478.

    CAS  PubMed  Google Scholar 

  • Schmidt, R. J. (1993). Opaque-2 and zein gene expression. In Control of Plant Gene Expression, D. P. S. Verma, ed. (Boca Raton: CRC Press, Inc.), pp. 337–355.

    Google Scholar 

  • Schmidt, R. J., Burr, F. A., Aukerman, M. J., and Burr, B. (1990). Maize regulatory gene Opaque-2 encodes a protein with a ‘leucine-zipper’ motif that binds to zein DNA. Proc. Natl. Acad. Sci. USA 87, 46–50.

    CAS  PubMed  Google Scholar 

  • Schmidt, R. J., Burr, F. A., and Burr, B. (1987). Transposon tagging and molecular analysis of the maize regulatory locus Opaque-2. Science 238, 960–963.

    CAS  PubMed  Google Scholar 

  • Schmidt, R. J., Ketudat, M., Aukerman, M. J., and Hoschek, G. (1992). Opaque-2 is a transcriptional activator that recognizes a specific target site in 22-kD zein genes. Plant Cell 4, 689–700.

    CAS  PubMed  Google Scholar 

  • Schulze-Lefert, P., Dangl, J. L., Becker-Andre, M., Halhbrock, K., and Schulz, W. (1989). Inducible in vivo DNA footprints define sequences necessary for UV light activation of the parsley chalcone synthase gene. EMBO J. 8, 651–656.

    CAS  PubMed  Google Scholar 

  • Schwartz, B. W., Yeung, E. C., and Meinke, D. W. (1994). Disruption of morphogenesis and transformation of the suspensor in abnormal suspensor mutants of Arabidopsis. Development 120, 3235–3245.

    CAS  Google Scholar 

  • Shen, Q., and Ho, T.-H. D. (1995). Functional dissection of an abscisic aacid (ABA)-inducible gene reveals two independent ABA-responsive complexes each containing a G-box and a novel cis-acting element. Plant Cell 7, 295–307.

    CAS  PubMed  Google Scholar 

  • Shotwell, M. A., and Larkins, B. A. (1989). The molecular biology and biochemistry of seed storage proteins. In The Biochemistry of Plants, A. Marcus, ed. (San Diego: Academic Press), pp. 297–345.

    Google Scholar 

  • Simpson, G. M. (1990). Seed Dormancy in Grasses (New York: Cambridge University Press).

    Google Scholar 

  • Skriver, K., and Mundy, J. (1990). Gene expression in response to abscisic acid and osmotic stress. Plant Cell 2, 503–513.

    CAS  PubMed  Google Scholar 

  • Smith, L. G., Jackson, D., and Hake, S. (1995). Expression of knottedl marks shoot meristem formation during maize embryogenesis. Dev. Genet. 16, 344–348.

    Google Scholar 

  • Steeves, T. A. (1983). The evolution and biological significance of seeds. Can. J. Bot. 61, 3550–3560.

    Google Scholar 

  • Steeves, T. A., and Sussex, I. M. (1989). Patterns in Plant Development, Second Edition (Cambridge: Cambridge University Press).

    Google Scholar 

  • Stinissen, H. M., Peumans, W. J., and De Langhe, E. (1984). Abscisic acid promotes lectin biosynthesis in developing and germinating rice embryos. Plant Cell Rep. 3, 55–59.

    CAS  Google Scholar 

  • Sussex, I. M. (1975). Growth and metabolism of the embryo and attached seedlings of the viviparous mangrove, Rhizophora mangle. Am. J. Bot. 62, 948–953.

    CAS  Google Scholar 

  • Szekeres, M., Nemeth, K., Koncz-Kalman, Z., Mathur, J., Kauschmann, A., Altmann, T, Redei, G.P., Nagy, F., Schell, J., Koncz, C. (1996). Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85, 171–182.

    CAS  PubMed  Google Scholar 

  • Tabata, T., Nakayama, T., Mikami, K., and Iwabuchi, M. (1991). HBP-1a and HBP-1b: leucine zipper-type transcription factors of wheat. EMBO J. 10, 1459–1468.

    CAS  PubMed  Google Scholar 

  • Tal, M., and Nevo, Y. (1973). Abnormal stomatal behaviour and root resistance and hormonal imbalance in three wilty mutants of tomato. Biochem. Genet. 8, 291–300.

    CAS  PubMed  Google Scholar 

  • Thomann, E. B., Sollinger, J., White, C., and Rivin, C. J. (1992). Accumulation of group 3 late embryogenesis abundant proteins in Zea mays embryos: roles of abscisic acid and the Viviparous-1 gene product. Plant Physiol. 99, 607–614.

    CAS  PubMed  Google Scholar 

  • Thomas, T. L. (1993). Gene expression during plant embryogenesis and germination: an overview. Plant Cell 5, 1401–1410.

    CAS  PubMed  Google Scholar 

  • Thomas, T. L., Vivekananda, J., and Bogue, M. A. (1991). ABA regulation of gene expression in embryos and mature plants. In Abscisic Acid: Physiology and Biochemistry, W. J. Davies and H. G. Jones, eds. (Oxford: Bios Scientific Publishers), pp. 125–136.

    Google Scholar 

  • Toyomasu, T., Yamane, H., Murofushi, N., and Inoue, Y. (1994). Effects of exogenously applied gibberellin and red light on the endogenous levels of abscisic acid in photoblastic lettuce seeds. Plant Cell Physiol. 35, 127–129.

    CAS  Google Scholar 

  • Tykarska, T. (1982). Rape embryogenesis. IV. Appearance and disappearance of starch during embryo development. . Acta Soc. Bot. Pol. 51, 381–387.

    CAS  Google Scholar 

  • Tykarska, T. (1987a). Rape embryogenesis. V. Accumulation of lipid bodies. Acta Soc. Bot. Pol. 56, 573–584.

    CAS  Google Scholar 

  • Tykarska, T. (1987b). Rape embryogenesis. VI. Formation of protein bodies. . Acta Soc. Bot. Pol. 56, 585–598.

    CAS  Google Scholar 

  • Vellanoweth, R. L., and Okita, T. W. (1993). Analysis of nuclear proteins interacting with a wheat alpha-beta gliadin seed storage protein gene. . Plant Mol. Biol. 22, 25–41.

    CAS  PubMed  Google Scholar 

  • Vertucci, C. W., and Farrant, J. M. (1995). Acquisition and loss of desiccation tolerance. In Seed Development and Germination, L Kigel and G. Galili, eds. (New York: Marcel Dekker, Inc.), pp. 237–271.

    Google Scholar 

  • Vilardell, J., Martinez-Zapater, J. M., Goday, A., Arenas, C., and Pages, M. (1994). Regulation of the rabl 7 gene promoter in transgenic Arabidopsis wild-type, ABA-deficient and ABA-insensitive mutants. . Plant Mol. Biol. 24, 561–569.

    CAS  PubMed  Google Scholar 

  • Voelker, T., Sturm, A., and Chrispeels, M. J. (1987). Differences in expression between two seed lectin alleles obtained from normal and lectin-deficient beans are maintained in transgenic tobacco. EMBO J. 6, 3571–3578.

    CAS  PubMed  Google Scholar 

  • Walbot, V. (1978). Control mechanisms for plant embryogeny. In Dormancy and Developmental Arrest, M. E. Clutter, ed. (New York: Academic Press, Inc.), pp. 113–166.

    Google Scholar 

  • Walker-Simmons, M. (1987). ABA levels and sensitivity in developing wheat embryos of sprouting resistant and susceptible cultivars. Plant Physiol. 84, 61–66.

    CAS  PubMed  Google Scholar 

  • Walker-Simmons, M., Kudrna, D. A., and Warner, R. L. (1989). Reduced accumulation of ABA during water stress in a molybdenum cofactor mutant of barley. Plant Physiol. 90, 728–733.

    CAS  PubMed  Google Scholar 

  • Wang, T., Donkin, M., and Martin, E. (1984). The physiology of a wilty pea: abscisic acid production under water stress. J. Exp. Bot. 35, 1222–1232.

    CAS  Google Scholar 

  • Welbaum, G. E., and Bradford, K. J. (1989). Water relations of seed development and germination in muskmelon (Cucumis melo L.). II. Development of germinability, vigour, and desiccation tolerance. J. Exp. Bot. 40, 1355–1362.

    Google Scholar 

  • West, M. A., and Harada, J. J. (1993). Embryogenesis in higher plants: An overview. Plant Cell 5, 1361–1369.

    PubMed  Google Scholar 

  • West, M. A. L., Matsudaira Yee, K. L., Danao, J., Zimmerman, J. L., Fischer, R. L., Goldberg, R. B., and Harada, J. J. (1994). LEAFY COTYLEDON1 is an essential regulator of late embryogenesis and cotyledon identity in Arabidopsis. Plant Cell 6, 1731–1745.

    CAS  PubMed  Google Scholar 

  • Williamson, J. D., Quatrano, R. S., and Cuming, A. C. (1985). Em polypeptide and its messenger RNA levels are modulated by abscisic acid during embryogenesis in wheat. . Eur. J. Biochem. 152, 501–507.

    CAS  Google Scholar 

  • Wobus, U., Borisjuk, L., Panitz, R., Manteuffel, R., Baumlein, H., Wohlfahrt, T., Heim, U., Weber, H., Misera, S., and Weschke, W. (1995). Control of seed storage protein gene expression: new aspects on an old problem. J. Plant Physiol. 145, 592–599.

    CAS  Google Scholar 

  • Xu, N., and Bewley, J. D. (1991). Sensitivity to abscisic acid and osmoticum changes during embryogenesis of alfalfa (Medicago sativa). J. Exp. Bot. 42, 821–826.

    CAS  Google Scholar 

  • Xu, N., and Bewley, J. D. (1995a). Temporal and nutritional factors modulate responses to abscisic acid and osmoticum in their regulation of storage protein synthesis in developing seeds of alfalfa (Medicago sativa L.). J. Exp. Bot. 46, 675–686.

    CAS  Google Scholar 

  • Xu, N., and Bewley, J. D. (1995b). The role of abscisic acid in germination, storage protein synthesis and desiccation tolerance in alfalfa (Medicago sativa L.) seeds, as shown by inhibition of its synthesis by fluridone during development. J. Exp. Bot. 46, 687–694.

    CAS  Google Scholar 

  • Xu, N., Coulter, K. M., and Bewley, J. D. (1990). Abscisic acid and osmoticum prevent germinatin of developing alfalfa embryos, but only osmoticum maintains the synthesis of developmental proteins. Planta 752, 382–390.

    Google Scholar 

  • Yadegari, R., DePaiva, G. R., Laux, T., Koltunow, A. M., Apuya, N., Zimmerman, J. L., Fischer, R. L., Harada, J. J., and Goldberg, R. B. (1994). Cell differentiation and morphogenesis are uncoupled in Arabidopsis raspberry embryos. Plant Cell 6, 1713–1729.

    CAS  PubMed  Google Scholar 

  • Zeevaart, J. A. D., and Creelman, R. A. (1988). Metabolism and physiology of abscisic acid. Annu. Rev. Plant Physiol. Plant Mol. Biol. 39, 439–474.

    CAS  Google Scholar 

  • Zhang, J. Z., Santes, C. M., Engel, M. L., Gasser, C. S., and Harada, J. J. (1996). DNA sequences that activate isocitrate lyase gene expression during late embryogenesis and during postgerminative growth. Plant Physiol. 110, 1069–1079.

    CAS  PubMed  Google Scholar 

  • Zimmerman, J. L. (1993). Somatic embryogenesis: a model for early development in higher plants. Plant Cell 5, 1411–1423.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Harada, J.J. (1997). Seed Maturation and Control of Germination. In: Larkins, B.A., Vasil, I.K. (eds) Cellular and Molecular Biology of Plant Seed Development. Advances in Cellular and Molecular Biology of Plants, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8909-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8909-3_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4878-3

  • Online ISBN: 978-94-015-8909-3

  • eBook Packages: Springer Book Archive

Keywords

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Publish with us

Policies and ethics