This chapter describes starch synthesis in seeds, with emphasis on Zea mays L. Supplementary data from other non-photosynthetic organs such as the potato tuber as well as from some lower organisms are reviewed in the theme of biological universality and diversity. The approach taken is genetic. The most significant insight into this pathway (as well as virtually all others) has come from the elucidation of the biochemical lesions associated with the many mutants, primarily in maize, that affect starch content and composition. Hence, mutants are highlighted in this review.


Starch Synthesis Starch Biosynthesis Maize Endosperm Starch Branch Enzyme Amylose Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bae, J. M., Giroux, M. and Hannah, L. C. (1990) Cloning and characterization of the brittle-2 gene of maize. Maydica 35:317–322.Google Scholar
  2. Bhattacharyya, M. K., Smith, A. M., Ellis, T. H. N., Hedley, C. and Martin, C. (1990) The wrinkled-seed character of pea described by Mendel is caused by a transposon-like insertion in a gene encoding starch branching enzyme. Cell 60:115–122.PubMedCrossRefGoogle Scholar
  3. Bhave, M. R., Lawrence, S., Burton, C., and Hannah, L. C. (1990) Identification and molecular characterization of shrunken-2 cDNA clones of maize. The Plant Cell 2:581–588.PubMedGoogle Scholar
  4. Boyer, C. D. and Preiss, J. (1981) Evidence for independent genetic control of the multiple form of maize endosperm branching enzymes and starch syntheses. Plant Physiol. 67:1141–1145.PubMedCrossRefGoogle Scholar
  5. Boyer, C. D. and Hannah, L. C. (1994) Kernel mutants of corns. In: Hallaner, A. R. (ed.) Speciality Corn, pp. 1–28, CRC Press, Boca Raton, FL.Google Scholar
  6. Bryce, W. H. and Nelson, Jr., O. E. (1979) Starch-synthesizing enzymes in the endosperm and pollen of maize. Plant Physiol. 63:312–317.PubMedCrossRefGoogle Scholar
  7. Burr, B. and Burr, F. A. (1981) Controlling-element events at the shrunken locus in maize. Genetics 98:143–156.PubMedGoogle Scholar
  8. Burr, B., Burr, F. A. and Matz E. C. (1991) Database for loci mapped in TxCM and CoxTx R1 families. Maize Genetics Cooperation Newsletter 65:105–110.Google Scholar
  9. Cao, H., Sullivan, T. D., Boyer, C. D. and Shannon, J. C. (1995) Btl, a structural gene for the major 39–44 KD amyloplast membrane polypeptides. Physiol. Plant. 95:176–186.CrossRefGoogle Scholar
  10. Chen, B-Y and Janes, H. W. (1995) Comparison of ADP glucose pyrophosphorylase from tomato fruit and leaf tissues. Plant Physiol. 108 (suppl.) 79 (abstract).Google Scholar
  11. Chourey, P. and Nelson, Jr. O. E. (1976) The enzymatic deficiency conditioned by the shrunken1 mutants in maize. Biochem. Genet. 14:1041–55.PubMedCrossRefGoogle Scholar
  12. Chourey, P. and Nelson, Jr, O. E. (1979) Interallelic complementation at the sh locus in maize at the enzyme level. Genetics 91:317–325.PubMedGoogle Scholar
  13. Chourey, P., Latham, M. and Still, P., (1986) Expression of two sucrose synthase genes in endosperm and seedling cells of maize: evidence of tissue specific polymerization of promoters. Mol. Gen. Genet. 203:251–255.CrossRefGoogle Scholar
  14. Chourey, P. S. and Taliercio, E. W. (1994) Epistatic interaction and functional compensation between the two tissue- and cell-specific sucrose synthase genes in maize. Proc. Natl. Acad. Sci. USA 91:7917–7921.PubMedCrossRefGoogle Scholar
  15. Cobb, B. G. and Hannah, L. C. (1983) Development of wild type shrunken-1 and shrunken-2 maize kernels grown in vitro. Theor. Appl. Genet. 65:47–51.13.Google Scholar
  16. Cobb, B. G. and Hannah, L. C. (1986) Sugar utilization by developing wild type and shrunken-2 maize seeds. Plant Physiol. 80:609–611.PubMedCrossRefGoogle Scholar
  17. Cobb, B. G. and Hannah, L. C. (1988) Shrunken-1 encoded sucrose synthase is not required for sucrose synthesis in the maize endosperm. Plant Physiol. 88:1219–1221.PubMedCrossRefGoogle Scholar
  18. Dickinson, D. B. and Preiss, J. (1969) Presence of ADP-glucose pyrophosphorylase in shrunken-2 and brittle-2 mutants of maize endosperm. Plant Physiol. 44:1058–1062.PubMedCrossRefGoogle Scholar
  19. Echt, C. and Schwartz, D. (1981) Evidence for the inclusion of controlling elements within the structural gene at the waxy locus in maize. Genetics 99:275–284.PubMedGoogle Scholar
  20. Fisher, D. K., Boyer, C. D. and Hannah, L. C. (1993) Starch branching enzyme II from maize endosperm. Plant Physiol. 102:1045–1046.PubMedCrossRefGoogle Scholar
  21. Fisher, D. K., Gao, M., Kim, K-N., Boyer, C. D. and Guiltinan, M. J. (1996) Allelic analysis of the maize amylose extender locus suggests that independent genes encode starch branching enzymes Ha and IIb. Plant Physiol. 110:611–619.PubMedGoogle Scholar
  22. Fuchs, R. L. (1977) Purification and characterization of ADP-glucose pyrophosphorylase A from maize endosperm. Ph. D. Thesis. Texas A & M University.Google Scholar
  23. Gengenbach, B. (1977) Development of maize caryopses resulting from in vitro pollination. Planta 134:91–93.CrossRefGoogle Scholar
  24. Giroux, M. J., Boyer, C., Feix, G. and Hannah, L. C. (1994) Coordinated transcriptional regulation of storage product genes in the maize endosperm. Plant Physiol. 106:713–722.PubMedGoogle Scholar
  25. Giroux, M. J. and Hannah L. C. (1994) ADP-glucose pyrophosphorylase in shrunken2 and brittle2 mutants of maize. Mol. Gen. Genet. 243:400–408.PubMedGoogle Scholar
  26. Giroux, M., Smith-White, B., Gilmore, V., Hannah, L. C. and Preiss, J. (1995) The large subunit of the embryo isoform of ADP glucose pyrophosphorylase from maize. Plant Physiol. 108:1333–1335.PubMedCrossRefGoogle Scholar
  27. Guan, H. P. and Preiss, J. (1993) Differentiation of the properties of the branching isozymes from maize. Plant Physiol. 102:1269–73.PubMedGoogle Scholar
  28. Guan, H. P., Kuriki T., Sivak M. and Preiss, J. (1995) Maize branching enzyme catalyzes synthesis of glycogen-like polysaccharide in glgB-deficient Escherichia coli. Proc. Natl. Acad. Sci. USA 92:964–967.PubMedCrossRefGoogle Scholar
  29. Hannah, L. C. and Nelson, Jr. O. E. (1975) Characterization of adenosine diphosphate glucose pyrophosphorylase from developing maize seeds. Plant Physiol. 55:297–302.PubMedCrossRefGoogle Scholar
  30. Hannah, L. C. and Nelson, Jr. O. E. (1976) Characterization of ADP-glucose pyrophosphorylase from shrunken-2 and brittle-2 mutants of maize. Biochem. Genet. 14:547–560.PubMedCrossRefGoogle Scholar
  31. Hannah, L. C., Giroux, M., and Boyer, C. D. (1993) Biotechnological modification for sweet corn improvement. A review. In: Biotechnology for Horticulture, Sci. Hort. 55:177–197.CrossRefGoogle Scholar
  32. Hannah, L. C., Duke, E., Koch, K. and Cobb, B. G. (1994) Starch synthetic genes of maize. In: The Maize Handbook. M. Freeling and V. Walbot (eds.) pp. 624–630, Springer-Verlag, New York, NY.Google Scholar
  33. Hannah, L. C., Frommer, W., Su, J-C., Chourey, P. and Park, W. (1994) Sucrose syntheses. Plant Mol. Biol. 12:72–73.CrossRefGoogle Scholar
  34. Hannah, L. C., Baier, J., Caren, J. and Giroux, M. (1995) 3-Phosphoglyceric acid activation of maize endosperm ADP-glucose pyrophosphorylase following proteolytic cleavage of the SH2 or BT2 subunits. In: H. D. Pontis, G. L. Salerno and E. Echeverria (eds.) Sucrose Metabolism, Biochemistry and Molecular Biology. American Society of Plant Physiologists, Rockville, MD 14: 72–79.Google Scholar
  35. Harn, C., Mu, C., Huang, R., Knight, M., Kelling, P. and Wasserman, B. (1995) Isolation of a starch synthase cDNA clone from maize inbred line W64A. Plant Physiol. 108:50 (suppl.).Google Scholar
  36. Iglesias, A., Barry, G. F., Meyer, C., Bloksberg, L., Nakata, P., Greene, T., Laughlin, M. J., Okita, T. W., Kishore, G. M. and Preiss, J. (1993) Expression of the potato tuber ADP-glucose pyrophosphorylase in Escherichia cofi. J. Biol. Chem. 268:1081–86.PubMedGoogle Scholar
  37. James, M. G., Robertson, D. S. and Myers, A. M. (1995) Characterization of the maize gene sugary1, a determinant of starch composition in kernels. Plant Cell 7:417–429.PubMedGoogle Scholar
  38. Kleczkowski, L. A., Villand, P., Luthi Olsen, O-A. and Preiss, J. (1993) Insensitivity of barley endosperm ADP-glucose pyrophosphorylase to 3-phosphoglycerate and orthophosphate regulation. Plant Physiol. 101:179–186.PubMedCrossRefGoogle Scholar
  39. Kleczkowski, L. A., Villand, P. and Eimert, K. (1995) A possible source of PP; for the sucrose to starch conversion in cereal seeds. Plant Physiol. 108 (supplement) 30.Google Scholar
  40. Li, H. M., Sullivan, T. D. and Keestra, K. (1992) Information for targeting to the chloroplastic inner envelope membrane is contained in the mature coding region of the maize Btl-encoded protein. J. Biol. Chem. 267:18999–19004.PubMedGoogle Scholar
  41. Liu, K. C., Boyer, C. D. and Shannon, J. C. (1992) Carbohydrate transfer into isolated maize amyloplasts. Plant Physiol. 99:39.CrossRefGoogle Scholar
  42. Lowe, J. and Nelson, Jr. O. E. (1946) Miniature seed — a study in the development of a defective caryopsis in maize. Genetics 31:525–533.PubMedGoogle Scholar
  43. Macdonald, F. D., and Preiss, J. (1983) Solubilization of the starch-granule-bound starch syntheses of normal maize kernels. Plant Physiol. 73:175–178.PubMedCrossRefGoogle Scholar
  44. Maddelein, M. L., Libessart, N., Bellanger, F., Belure, B., D’Hulst, C., Van den Koornhuyse, N., Fontaine, T., Wieruszeski, J. M., Decq, A. and Ball, S. (1994) Toward an understanding of the biogenesis of the starch granule. Determination of granule-bound and soluble starch synthase functions in amylopectin synthesis. J. Biol. Chem. 269:25150–25157.PubMedGoogle Scholar
  45. Martin, C. and Smith, A. M. (1995) Starch biosynthesis. Plant Cell 7:971–85.PubMedGoogle Scholar
  46. McCarty, D. R., Shaw, J. R., and Hannah, L. C. (1986) The cloning, genetic mapping, and expression of the constitutive sucrose synthase locus of maize. Proc. Natl. Acad. Sci. USA 83:9099–9103.PubMedCrossRefGoogle Scholar
  47. Miller, M. E., and Chourey, P. S. (1992) The maize invertase-deficient miniature-1 seed mutation is associated with aberrant pedicel and endosperm development. Plant Cell 4:297–302.PubMedGoogle Scholar
  48. Miller, M. E., and Chourey, P. S. (1995) Intracellular immunolocalization of ADPglucose pyrophosphorylase in developing endosperm cells of maize. Planta 197:522–527.CrossRefGoogle Scholar
  49. Mu, C., Harn, C., Ko, Y-T., Singletary, G. W., Keeling, P. L., and Wasserman, B. P. (1994) Association of a 76 kDa polypeptide with soluble starch synthase I activity in maize (cv B73) endosperm. Plant J. 6:151–159.CrossRefGoogle Scholar
  50. Nelson, Jr., O. E. and Rines, H. W. (1962) The enzymatic deficiency in the waxy mutant of maize. Biochem. Biophys. Res. Comm. 9:297–300.CrossRefGoogle Scholar
  51. Nelson, Jr., O. E., Chourey, P. S., and Chang, M. T. (1978) Nucleoside diphosphate sugar-starch glucosyl transferase activity of the wx starch granules. Plant Physiol. 62:383–86.PubMedCrossRefGoogle Scholar
  52. Nelson, Jr., O. E. and Pan, D. (1995) Starch synthesis in maize endosperms. Ann Rev. Plant Physiol. Plant Mol. Biol. 46:475–474.CrossRefGoogle Scholar
  53. Okita, T. W., Nakata, P. A., Anderson, J. M., Sowokinos, J., Morell, J. and Preiss, J. (1990). The subunit structure of potato tuber ADPglucose pyrophosphorylase. Plant Physiol. 93:785–90.PubMedCrossRefGoogle Scholar
  54. Ozbun, J. L., Hawker, J. S. and Preiss, J. (1971) Adenosine diphosphoglucose-starch glucosyl transferases from developing kernels of waxy maize. Plant Physiol. 78:765–69.CrossRefGoogle Scholar
  55. Pan, D. and Nelson, Jr. O. E. (1985) The deficiency of a starch granule-bound enzyme phosphooligosaccharide synthase in developing bt1 endosperms. Maize Genet. Coop. News Lett. 59:105–106.Google Scholar
  56. Parera, C. A., Cantliffe, D. J. and Hannah, L. C. (1993) Improvement of vigor in shrunken2 corn seedlings. Search 15–28.Google Scholar
  57. Plaxton, W. C. and Preiss, J. (1987) Purification and properties of non-proteolytically degraded ADP-glucose pyrophosphorylase from maize endosperm. Plant Physiol. 83:105–112.PubMedCrossRefGoogle Scholar
  58. Pozueto-Romero, J., Ardila, F. and Akazawa, T. (1991a) ADP-glucose transport by the chloro-plast adenylate translocator is linked to starch biosynthesis. Plant Physiol. 97:1565–1672.CrossRefGoogle Scholar
  59. Pozueto-Romero, J., Frehner, M., Viole, A. M. and Akazawa, T. (1991b) Direct transport of ADP glucose by an adenylate translocator is linked to starch biosynthesis in amyloplasts. Proc. Natl. Acad. Sci. USA 88:5769–5773.CrossRefGoogle Scholar
  60. Preiss, J. (1982) Regulation of biosynthesis and degradation of starch. Ann. Rev. Plant Physiol. 33:431–454.CrossRefGoogle Scholar
  61. Preiss, J., Lammel, C. and Sabraw, A. (1971) A unique adenosine diphosphoglucose pyrophosphorylase associated with maize embryo tissue. Plant Physiol. 47:104–108.PubMedCrossRefGoogle Scholar
  62. Preiss, J. and Levi, C. (1980) Starch biosynthesis and degradation. In: Preiss (ed.), The Biochemistry of Plants. Academic Press, NY, p. 371.Google Scholar
  63. Preiss, J. and Romero, T. (1989) Physiology, biochemistry and genetics of bacterial glycogen synthesis. Adv. Microbiol. Phys. 30:183–238.CrossRefGoogle Scholar
  64. Preiss, J., Ball, K., Hutney, J., Smith-White, B., Li, L. and Okita, T. W. (1991) Regulatory mechanisms involved in the biosynthesis of starch. Pure Appl. Chem. 63:535–544.CrossRefGoogle Scholar
  65. Prioul J-L., Jeannette, E., Reyss, A., Gregoly, N., Giroux, M., Hannah, L. C. and Causse, M. (1994) Expression of ADP-glucose pyrophosphorylase in maize grain and source leaf during grain filling. Plant Physiol. 104:179–187.PubMedCrossRefGoogle Scholar
  66. Schwartz, D. (1960) Electrophoretic and immunochemical studies with endosperm proteins of maize mutants. Genetics 45:1419–27.PubMedGoogle Scholar
  67. Shannon, J. C. (1968) Carbon-14 distribution in carbohydrates of immature Zea mays kernels following 14CO2 treatment of intact plants. Plant Physiol. 43:1215–1220.PubMedCrossRefGoogle Scholar
  68. Shaw, J. R. and Hannah, L. C. (1992) Genomic sequence of the shrunken-2 gene of maize. Plant Physiol. 98:1214–1219.PubMedCrossRefGoogle Scholar
  69. Shaw, J. R., Ferl, R. J., Baier, J., St. Clair, D., Carson, C., McCarty, D. and Hannah, L. C. (1994) Structural features of the maize Sus1 gene and protein. Plant Physiol. 106:1659–1665.PubMedCrossRefGoogle Scholar
  70. Singh, B. J. and Preiss, J. (1985) Starch branching enzymes from maize: Immunological characterization using polyclonal and monoclonal antibodies. Plant Physiol. 79:34–40.PubMedCrossRefGoogle Scholar
  71. Sivak, M. N., Wagner, M., and Preiss, J. (1993) Biochemical evidence for the role of the waxy protein from pea as a granule-bound starch synthase. Plant Physiol. 103:1355–1359.PubMedGoogle Scholar
  72. Smith, A. (1990) Evidence that the “waxy” protein of pea is not the major starch-granule-bound starch synthase. Planta 182:599–604.CrossRefGoogle Scholar
  73. Smith-White, B. J. and Preiss, J. (1992) Comparison of proteins of ADP-glucose pyrophos-phorylase from diverse sources. J. Mol. Evol. 34:449–464.PubMedCrossRefGoogle Scholar
  74. Springer, B., Werr, W. and Starlinger, P. (1985) Maize Genetics Cooperation Newsletter 59:32–33.Google Scholar
  75. Stark D. M., Timmerman, K. P., Barry, G., Preiss, J. and Kishore, G. M. (1992) Regulation of the amount of starch in plant tissues by ADP-glucose pyrophosphorylase. Science 258:287–292.PubMedCrossRefGoogle Scholar
  76. Stinard, P. S., Robertson, D. S. and Schnable, P. S. (1993) Genetic isolation, cloning and analysis of a Mutator-induced, dominant antimorph of the maize amylose extender1 locus. Plant Cell 5:1555–1566.PubMedGoogle Scholar
  77. Sullivan, T. D., Strelow, L. I., Illingworth, C. A., Phillips, R. L. and Nelson, Jr., O. E. (1991) The maize brittle-1 locus: molecular characterization based on DNA clones isolated using the dSpm-tagged brittle-1-mutable allele. Plant Cell 3:1337–1348.PubMedGoogle Scholar
  78. Sullivan, T. D. and Kaneko, Y. (1995) The maize brittle1 gene encodes amyloplast membrane polypeptides. Planta 196: 477–484.PubMedCrossRefGoogle Scholar
  79. Taliercio, E., Shanker, S., Choi, J. H. and Chourey, P. S. (1995) Molecutar aspects of cell wall invertase in developing kernels of maize. Plant Physiol. (supplement) 108:182 (Abstract)Google Scholar
  80. Tettow, I. J., Blissett, K. J. and Evans, M. J. (1994) Starch synthesis and carbohydrate oxidation in amyloplasts from developing wheat endosperm. Planta 4:454–460.CrossRefGoogle Scholar
  81. Tsai C. Y. (1965) Correlation of enzymatic activity with Wx dosage. Maize Genetics Cooperation Newsletter 39:153–156.Google Scholar
  82. Tsai, C. Y. and Nelson, Jr. O. E. (1966) Starch-deficient maize mutant lacking adenosine diphosphate glucose pyrophosphorylase activity. Science 151:341–343.PubMedCrossRefGoogle Scholar
  83. Villand, P. and Kleczkowski, L. A. (1994) Is there an alternative pathway for starch biosynthesis in cereal seeds? Z. Naturforsch. 49c:215–219.Google Scholar
  84. Visser, R. G., Sornhorst, I., Kuipers, G. J., Ruys, N. J., Feenstra, W. J. and Jacobsen, E. (1991) Inhibition of the expression of the gene for granule-bound starch synthase in potato by antisense constructs. Mol. Gen. Genet. 225:289–296.PubMedCrossRefGoogle Scholar
  85. Xu, J., Pemberton, G. H., Almira, E. C., McCarty, D. R. and Koch, K. (1995) The Ivrl gene for invertase in maize. Plant Physiol. 108:1293–1294.PubMedCrossRefGoogle Scholar
  86. Zrenner, R., Willmitzer, L. and Sonnewaid, U. (1993) Analysis of the expression of potato uridenediphosphate-glucose pyrophosphorylase and its inhibition by antisense RNA. Planta 190:247–252.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1997

Authors and Affiliations

  • L. Curtis Hannah
    • 1
  1. 1.Plant Molecular and Cellular Biology and Department of Horticultural SciencesUniversity of FloridaGainesvilleUSA

Personalised recommendations