Skip to main content

CELSS Research: Interaction between Space and Terrestrial Approaches in Plant Science

  • Chapter
Plant Production in Closed Ecosystems

Abstract

Sustainable functioning of Life Support System in Space, is based on the concept of Artificial Ecosystem associating producer (plants) and consumer (men) compartments, with a recycling process of wastes. During the last 10 years, the main of studies have concerned the exploration of the limits of plant productivity. Very high yields were obtained in continuous and high lighting, without reaching any limit. Nutrition concepts were renewed. CELSS activities induce now a development in the techniques of image processing applied to plants in order to follow growth, to detect stresses or diseases or to pilot harvesting robots. New equipments were developed. The C23A system (Chambres de Culture Automatiques en Atmosphere Artificielle) is described as an example of closed growth chamber system. It is liable to quantify the main exchanges of matter between plant canopies and above or underground environments. Advantages of closure are emphasised in comparison with open flow systems. The interest of multiple systems is illustrated by the twin chambers method able to compare growth rates, or environmental effects on plants, at the 1% level.The concept of Artificial Ecosystems developed for space project is more and more taken into account by the scientific community. It is considered as a new tool to study basic and applied problems related to ecology and not only concerned by space research. An accurate example concerns the effect of CO2 enrichment on the system Plants-SoilMicro-organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akers CP et al. (1985) The Minitron System for growth of small plants under controlled environment conditions. J. Amer. Soc. Hort. Sci., 110(3), 353–357.

    CAS  Google Scholar 

  • André M. et al. (1972a) Units for automatic culture in artificial atmosphere- C23A Project, Symp. Basic problems of protected vegetable production, 09/72, Hanovre (RFA), in Acta Horticult., 39: 59–71,(1974).

    Google Scholar 

  • André M. et al. (1972b) Regulation par échantillonage a partir d’un spectromètre de masse de cellules de culture en atmospheres artificielles, Mesure et Regulation, 9, 27–31.

    Google Scholar 

  • André M. et al. (1985) The C23A system, an example of quantitative control of plant growth associated with a data base. In Proceeding of fifteenth intersociety conference on Environmental System, San Francisco Calif. July 15–17, 1985. Publisher: SAE The Engineering Resource for Advancing Mobility, paper No 851395 and Report NASA TM 88215.

    Google Scholar 

  • André M and Richaud C (1986) Can plants grow in quasi-vacuum? In NASA, Ames Research Center, Controlled Ecological Life Suppo rt Systems, p. 395–404. Report t NASA TM 88215.

    Google Scholar 

  • André M. et al. (1987) Etude des relations entre photsynthese respiration, transpiration et nutrition minerale chez le blé. COSPAR and International Academy of Astronautics, 26th, Toulouse, France, June 30-July 11, 1986. Adv. Space Res. 7(4), 105–114.

    Article  PubMed  Google Scholar 

  • André M and Massimino D (1992) Growth of plants at reduced pressures- Experiment in wheat- Technological advantages and constraints, Adv. Space Res., 12(5), 97–106.

    Article  PubMed  Google Scholar 

  • André M (1993) Mesures sur Végétaux et organismes vivants — La Méthode des chambres jumelles, Revue de Métrologie, 71(6), 784–788.

    Google Scholar 

  • André M et al. (1994a) Biodiversity in model ecosystems, Nature, 371, 565.

    Article  Google Scholar 

  • André M et al. (1994b) Ecosimp2 model — Prediction of CO2 concentration changes and carbon status in closed ecosystems. Adv. Space Res., 14(11), 323–326.

    Article  PubMed  Google Scholar 

  • Anonymous (1989) Continuous Hydroponic Wheat Production Using a Recirculating System. Report NASA TM 102784.

    Google Scholar 

  • Barnes C and Bugbee B (1992) Morphological responses of wheat to blue light. J. Plant, 139(3), 339–342.

    CAS  Google Scholar 

  • Batten JH et al. (1994) Biomass production chamber air analysis of wheat study (BWT931), Report NASA TM 109192.

    Google Scholar 

  • Bennett SM et al. (1989) Potential use of ions exchange materials in controlling nutrient balance of a recirculating solution for use in a CELSS (Abs). ASGSB Bull. 2, 38.

    Google Scholar 

  • Blüm V. et al. (1994) CEBAS mini-module : test results of an artificial (man-made) aquatic ecosystem, Adv. Space Res., 14(11), 203–212.

    Article  Google Scholar 

  • Boston PJ (1981) Low-pressure greenhouses and plants for a manned research station on Mars. British Interplanetary Society, Journal (Space Chronicle) 34, 189.

    Google Scholar 

  • Bréchignac F and André M (1984) Oxygen uptake and photosynthesis of the red macroalga, Chondrus crispus. in seawater — Effect of light and CO2 concentration. Plant Physiol., 75, 919–923.

    Article  PubMed  Google Scholar 

  • Bréchignac F and Wolf L (1994) “SYMBIOSE” system for microgavity bioregenerative support of experiments. Adv. Space Res., 14(11), 79–88.

    Article  PubMed  Google Scholar 

  • Bubenheim DL and Wignarajah, K. (1994) Suitability of gray water for hydroponic crop production following biological/chemical processing. in Proceedings of the 30th COSPAR Scientific Assembly, Hamburg, Germany, 11–21 July 1994, Adv. Space Res. (in press).

    Google Scholar 

  • Bugbee BG and Salisbury FB (1988) Exploring the limits of crop productivity. I. Photosynthetic efficiency of wheat in high irradiance environments. Plant Physiol., 88, 869–878.

    Article  PubMed  CAS  Google Scholar 

  • Chaillou S et al. (1991) Expression of characteristics of ammonium nutrition as affected by pH of the root medium. J. Exp. Bot., 42(23), 189–196.

    Article  PubMed  CAS  Google Scholar 

  • Charron CS (1995) Final report, Volatile emissions from plants growing in a closed environment. Report NASA CR 197455.

    Google Scholar 

  • Corey KA et al. (1994) Carbon dioxide exchange of Lettuce plants under Hypobaric Conditions, in Procceedings of the 30th COSPAR Scientific Assembly, Hamburg, Germany, 11–21 July 1994, Adv. Space Res., 18 (4,5) 265–272.

    Google Scholar 

  • Dadykin VP et al. (1968) Some data on volatile (oxygen containing) compounds released by vegetables. In Space Biol. and Med., Vol. 1(6), 14 March 1968, p. 73–79.

    Google Scholar 

  • Daunicht HJ and Brinkjans HJ (1992) Gas exchange and growth of plants under reduced air pressure, Adv. Space Res., 12(5), 107–114.

    Article  Google Scholar 

  • Dole SH (1964) The ecological complex in extraterrestrial bases. The third annual meeting of the working Group on Extraterrestrial Ressources, on Nov. 18–20, 1964. Rand Corp., Santa Monica, Ca.

    Google Scholar 

  • Du Cloux, H. et al. (1987) Wheat response to CO2 enrichment : Growth and CO2 exchanges at two plant densities. J. Exp.Bot., 38(194), 1421–1431.

    Article  Google Scholar 

  • Fabreguettes V et al. (1994) The C23A system : A Tool for Global Control of Plant Environment and Exchange Measurements. 24th Inter. Conf. on Environmental Systems (ICES), Friedrischaffen June 20–24–1994. Edit: SAE technical paper n° 941544, Warendale, USA.

    Book  Google Scholar 

  • Gerbaud A and André M (1979) Photosynthesis and photorespiration in whole plants of wheat. Plant. Physiol., 64, 735–738.

    Article  PubMed  CAS  Google Scholar 

  • Giacomelli GA et al. (1994) System approach to controlling plant growth systems. Adv. Space Res., 14(11), 191–198.

    Article  PubMed  CAS  Google Scholar 

  • Gitelson JI et al. (1963) Automation of cultivation of unicellular organisms for their use in a closed biological system, in : Sisakyan, N.M. and V. I. Yazdovsky, Eds Problemy Komicheskoy Biologii, Vol.3, 472–476. Moscou, Nauka, 1964. (Transl: Vol. 3, pp 534–539. Washington D.C., US Dept. Comm. (JPRS-25287).

    Google Scholar 

  • Gitelson JI et al. (1975) Experimental Ecological System Including Man. In : Problems of space Biology, Vol. 28, Nauka Press, Moscow. Translation NASA Tech. Transl. F-16993, Washington, D.C.

    Google Scholar 

  • Gitelson JI et al. (1990) Long term experiments on man stay in biological life support system. Adv. Space Res., 9(8), 65–71.

    Article  Google Scholar 

  • Golueke CG (1962) The use of photosynthesis in the control of enclosed environments. Am. J. Publ. Health, 52 (2, Pt.1), 258–265.

    Article  CAS  Google Scholar 

  • Goto E et al. (1995) Effect of reduced total air pressure on spinach growth. J. Agric. Meteorol., 51(2), 139–143.

    Article  Google Scholar 

  • Guérin de Montgareuil P et al. (1971). Mesure instantanée des besoins métaboliques des plantes : applications agronomiques et éventuellement spatiales. Proceedings of Colloquium on Space Biology related to the Post-Apollo program. Paris. 1971. ESRO ed. Paris, p 310–318.

    Google Scholar 

  • Henninger D.L. et al. (1994) NASA’s advanced life support systems human-related test facility, in procceedings of the 30th COSPAR Scientific Assembly, Hamburg, Germany, 11–21 July 1994, Adv. Space Res. (in press).

    Google Scholar 

  • Hetzroni A et al. (1994) Machine vision monitoring of plant health, Adv. Space Res., 14(11), 203–212.

    Article  PubMed  CAS  Google Scholar 

  • Hill WA et al. (1989) Utilization of sweet potatoes in controlled ecological life support systems (CELSS), Adv. Space Res. 9(8), 29–39.

    Article  PubMed  CAS  Google Scholar 

  • Ingestadt T (1982) Relative addition rate and external concentration, driving variables used in plant nutrition research. Plant Cell Env., 5, 443–453.

    Article  Google Scholar 

  • Jones WL (1975) Life Support Systems for interplanetary spacecraft and space stations for long term use. in : Fondations of space biology and medicine, vol. III (Ed. by Melvin Calvin and Gazenko) NASA-Washington and HAYKA- Moscou publishers, chapt. 9, 247–273.

    Google Scholar 

  • Kiyota M et al. (1989) Plant cultural system incorporated into CELSS. IAF PAPER 89–580, Inter. Astronautical Congress, 40th, Malaga, Spain, Oct. 7–13, 1989.

    Google Scholar 

  • Knight SL and Mitchell CA (1988) Effects of CO2 and photosynthetic photon flux on yield, gas exchange and growth rate of Lactuca sativa L. ‘Waldmann’s Green.’. J. Exp. Bot. 39(200), 317–328.

    Article  PubMed  CAS  Google Scholar 

  • Körner Ch and Arnone III JA (1992) Responses to elevated carbon dioxide in artificial tropical ecosystems, Science, 257, 1672–1675.

    Article  PubMed  Google Scholar 

  • Körner Ch et al. (1993) The utility of enclosed artificial ecosystems in CO2 research, in : Design and execution of experiments on CO2 enrichment (Ed. by Schultze E.D., and Mooney, H.A.) Ecosystem research Report N°6, C.C.E. Brussels, 1993.

    Google Scholar 

  • Kondo N et al. (1994) Fruit harvesting robots. Adv. Space Res., (in press).

    Google Scholar 

  • Lasseur Ch et al. (1989) The C23A system : First step for a monitoring system of CELSS in flight. Adv. Space Res., 9 (8), 741–746.

    Article  Google Scholar 

  • Lawton JH (1995) Ecological experiments with model systems. Science, 269, 328–331.

    Article  PubMed  CAS  Google Scholar 

  • MacElroy RD et al. (1986) Controlled Ecological Life Support System : CELSS’s 85 worshop, NASA Report TM 88215.

    Google Scholar 

  • Manukian A et al. (1989) Plant health sensing. In : Advanced Space Design Program to the Universities Space Research Association and the National Aeronautics and Space Administration, 34 p.

    Google Scholar 

  • Manivel P (1989) Mise en evidence des contraintes de la miniaturisation d’un sytème experimental sur la regulation d’atmosphère par analyseur multiplexé. Rapport de projet de fin d’études ENSP G, Institut National Polytechnique de Grenoble and DEA de l’Université de Grenoble.

    Google Scholar 

  • Masssimino D and André M (1996) Growth of wheat under 100 mb of pressure. In Proceedings of 31 st COSPAR, Birmingham, 14–20 July 1996, Adv. Space Res.(in press).

    Google Scholar 

  • Ming DW and Henninger DL (Eds) (1989) Lunar base agriculture: Soils for plant growth. Madison, WI, American Society of Agronomy, Inc., Crop Science Society of America and Soil Science Society of America, Inc., 1989, 274 p. Morrow RC and Tibbitts TW (1987) Air ion exposure system for plants. Hort. Sci., 22, 148–151.

    Google Scholar 

  • Morrow RC et al (1989) Light emitting diodes as a photosynthetic irradiance source for plants (Abs). ASGSB Bull.,3(1), 60.

    Google Scholar 

  • Nelson M et al. (1994) Atmospheric dynamics and bioregenerative technologies in a soil-based ecological life support system : initial results from Biosphere 2, Adv. Space Res., 14(11), 417–426.

    Article  PubMed  CAS  Google Scholar 

  • Nitta K et al. (1996) Measurements of trace contaminants in closed-type plant cultivation chambers. Adv. Space Res. (in press)

    Google Scholar 

  • Oguchi M et al. (1994) Measurement of rice crop metabolism using closed-type plant cultivation equipment. Adv. Space Res., 14(11), 237–242.

    Article  PubMed  CAS  Google Scholar 

  • Prince RP et al. (1987) A’breadboard’ biomass production chamber for CELSS, in Aerospace century XXI: Space sciences, applications, and commercial developments, Proceedings of the Thirty-third Annual AAS International Conference, Boulder, CO, Oct. 26–29, 1986, AAS PAPER 86–338, San Diego, CA, Univelt, Inc., p. 1291–1303.

    Google Scholar 

  • Raper CD Jr. (Ed.) (1982) Plant Growth in Controlled Environments in Response to Characteristics of Nutrient Solutions. Moffett Field, CA, NASA, Ames Research Center, Report NASA CR 166431, 99 p.

    Google Scholar 

  • Salisbury FB and Bugbee B (1988) Plant productivity in controlled environments. Hort. Sci., 23(2), 293–299.

    CAS  Google Scholar 

  • Shepeleff YY (1975) Biological Life Support Systems. in : Fondations of space Biology and Medicine, Vol.III Space Medicin and Biotechnology, (ed. by Melvin Calvin and O.G. Gazenko), NASA,Washington and HAYKA-Moscou, 1975, chapt. 10, 274–308.

    Google Scholar 

  • Smernoff D et al. (1994) Preliminary results from a closed plant growth and soil decomposition system : an experimental and modeling study. in Proceedings of the 30th COSPAR Scientific Assembly Hamburg, Germany, 11–21 July 1994, Adv. Space Res. (in press).

    Google Scholar 

  • Strayer RF (1991) Microbiological characterization of the Biomass Production Chamber during hydroponic growth of crops at the Controlled Ecological Life Support System (CELSS) Breadboard Facility. SAE Technical Paper Series, p. 35–48, SAE Paper 911427.

    Book  Google Scholar 

  • Tabacco MB and Digiuseppe TG (1994) Optical sensors for environmental control and system management. in Proceedings of the 30th COSPAR Scientific Assembly, Hamburg, Germany, 11–21 July 1994, Adv. Space Res. 18 (4,5), 125–134.

    Google Scholar 

  • Thomas D and André M (1982) The response of oxygen and carbon dioxide exchanges and nutrient uptake to short term water stress in soybean. J. Exp. Bot., 33(134), 393–405.

    Article  CAS  Google Scholar 

  • Tibbitts TW et al. (1983) Growth of lettuce, spinach, mustard, and wheat plants under four combinations of high-pressure sodium, metal halide, and tungsten halogen lamps at equal PPFD. J. Amer. Soc. Hort. Sci., 108(4), 622–630.

    Google Scholar 

  • Tibbitts TW and Wheeler RM (1986) Controlled Environment Life Support System: Growth Studies with Potatoes. 51 p. Report NASA CR 177400.

    Google Scholar 

  • Tibbitts TW (ed.) (1988) Extraterrestrial crop production. Special insert of Hort. Science, 23 (2), ASHS pup., Alexandria (Virginie).

    Google Scholar 

  • Tibbitts TW et al. (1988) Cultural systems for growing potatoes in space. Acta Hort. 230, 287–289.

    CAS  Google Scholar 

  • Tibbitts TW et al. (1992) Growing root, tuber and nut crops hydroponically for CELSS. Adv. Space Res. 12(5), 125–131.

    Article  PubMed  Google Scholar 

  • Ting KC et al. (1994) Research on flexible automation and robotics for plant production at Rugers University. in Proceedings of the 30th COSPAR Scientific Assembly, Hamburg, Germany, 11–21 July 1994, Adv. Space Res. (in press).

    Google Scholar 

  • Tourneux Ch (1991) Etude de l’asservissement de l’apport de nutriments a la photosynthèse chez le blé. Application a la gestion des solutions en culture hydroponique. Diplôme d’Etudes Approfondies (DEA). Ecologie Générale et Production Vegétale. Université Paris VI et XI. Rapport LACC-Cadarache n° 119, 45p.

    Google Scholar 

  • Wheeler R.M and Tibbitts TW (1986) Growth and tuberization of potato (Solanu tuberosum L.) under continuous light. Plant Physiol., 80, 801–804.

    Article  PubMed  CAS  Google Scholar 

  • Wheeler RM et al. (1988) Comparison of axillary bud growth and patatin accumulation in potato leaf cuttings as assays for tuber induction. Ann. Bot., 62,25–30.

    PubMed  CAS  Google Scholar 

  • Wheeler RM et al. (1990) Proximate Composition of seed and biomass from soybean plants grown at different carbon dioxide (CO2) . 28 p. Report NASA TM 103496.

    Google Scholar 

  • Wheeler RM et al. (1991a) Soybean stem growth under high-pressure sodium with supplemental blue lighting.Agron. J., 83, 903–906.

    Article  PubMed  CAS  Google Scholar 

  • Wheeler RM et al. (1991b) Potato growth and yield in Nutrient Film Technique (NFT). Report NASA CR 184853.

    Google Scholar 

  • Wheeler RM et al. (1991c) Carbon dioxide effects on potato growth under different photoperiods and irradiance. Crop Sci., 31(5),1209–1213.

    Article  PubMed  CAS  Google Scholar 

  • Woodhouse R et al. (1994) Analysis of remote reflexion spectroscopy to monitor plant health. Adv. Space Res., 14(11), 199–202.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

André, M., Chagvardieff, P. (1997). CELSS Research: Interaction between Space and Terrestrial Approaches in Plant Science. In: Goto, E., Kurata, K., Hayashi, M., Sase, S. (eds) Plant Production in Closed Ecosystems. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8889-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8889-8_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4798-4

  • Online ISBN: 978-94-015-8889-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics