Skip to main content

LCVD with Copper Vapour and Copper Bromide Vapour Lasers — Review

  • Chapter
High Power Lasers — Science and Engineering

Part of the book series: NATO ASI Series ((ASHT,volume 7))

  • 247 Accesses

Abstract

Recently, metal organic chemical vapor deposition (MOCVD) has become a successful competitor to the classical sputtering method for aluminium [1]. Information concerning the photolytic decomposition of Al alkyls with excimer laser radiating in the UV range of wavelengths predominates in the literature, while experiments on the basis of pyrolysis of these compounds by laser emission are treated in far fewer papers. Besides, there is no definite answer as to what is the mechanism of thermal decomposition of trimethylaluminium. In the literature there is a lack of information concerning the use of pulsed visible lasers and in particular a Copper Vapour Laser (CVL) or Copper Bromide Vapour Laser (CBVL) in the wavelength range 510 – 578 nm for LCVD of any materials. This has motivated our research into the activation of chemical processes by such a laser for deposition of aluminium and silicon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Levy, R.A. Green M.L. and Gallagher, P.K., (1984) Characterisation of LPCVD aluminium for VLSI processing, Journal of Electrochemical Society No 9, 2175–2182.

    Google Scholar 

  2. Shanov, V., Popov, C and Ivanov B. (1993) LCVD of aluminium stripes obtained by pyrolysis of TMAA and TMA, Journal de Physique IV, 3 255–260.

    Google Scholar 

  3. Shanov, V., Ivanov B. and Popov, C (1992) Laser chemical vapour deposition of thin aluminium coatings, Thin Solid Films 207, 71-74.

    Google Scholar 

  4. Shanov, V., Ivanov B. and Popov, C. (1991) Laser induced direct writing of aluminium, Journal de Physique II 1/7, 373–380.

    Google Scholar 

  5. Shanov, V., Ivanov B. and Popov, C (1993) Growth rate behavior of LCVD aluminium, Processing of Advanced Materials 3, 41–44.

    Google Scholar 

  6. Allen, S., (1981) Laser chemical vapor deposition: A technique for selective area deposition, Journal of Applied Physics 52, 6501–6505.

    Google Scholar 

  7. Thomson, M. and Walsh, J., (1983) A Handbook of Inductively Coupled Plasma Spectroscopy, Mackie, Glasgow.

    Google Scholar 

  8. Shanov, V., Popov, C, Ivanov, Souleva, A. and Peev, G. (1993) An experimental approach for growth rate determination of LCVD written aluminium stripes, Journal of Materials Science: Materials in Electronics 4, 55–58.

    Google Scholar 

  9. Suzuki, N., Anayama, C., Masu, K., Tsubouchi, K. and Mikoshiba, N., (1986) Japanese Journal of Applied Physics, Pyrolysis and photolysis of trimethylaluminium 25, 1236–1242.

    Google Scholar 

  10. Squire, D.W., Dilcey, C.S. and Lin, M.C., (1985) Mechanistic studies of the decomposition of trimethylaluminium on heated surfaces, Journal of Vacuum Science and Technology B3, 1513–1518.

    Article  ADS  Google Scholar 

  11. Yeddanapalli, L.M. and Schubert C.C., (1946) Thermal and photochemical decomposition of gaseous aluminium trimethyl, Journal of Chemical Physics, 14, 1-8.

    Google Scholar 

  12. Haba, B., Hussey, B.W. and Gupta, A., (1991) Temperature distribution during heating using a high repetition rate pulsed laser, Journal of Applied Physics 69, 2871–2876.

    Article  ADS  Google Scholar 

  13. Tanaka, J. and Smith, S.R., (1969) Mass spectra of Bridge-bonded aluminium compounds, Inorganic Chemistry 8, 265–270.

    Article  Google Scholar 

  14. Ivanov, B. Popov, C. and Shanov, V., (1992) Mass spectrometric study of laser induced pyrolytic decomposition of TMA, Journal of Advanced Materials for Optics and Electronics 1 287–292.

    Google Scholar 

  15. Grasselli, J.G. and Ritchey, W.M., (1975) Atlas of Spectral Data and Physical Constants for Organic Compounds, 2end ed., CRC Press, Cleveland OH.

    Google Scholar 

  16. Pauleau, Y., (1987) Interconnect materials for VLSI circuits, Solid State Technology, No 2, 61–67; No 4, 155–162; No 6, 101–105.

    Google Scholar 

  17. Popov, C., Ivanov, B. and Shanov, V., (1994) Laser-induced chemical vapor deposition of aluminium from TMAA, Journal of Applied Physics 75, 3687–3689.

    Article  ADS  Google Scholar 

  18. Popov, C., Ivanov, B. and Shanov, V., (1993) Mass spectrometric study of laser induced pyrolytic decomposition of TIBA and TMAA, Journal de Physique IV 3, 107–112.

    Google Scholar 

  19. Ivanov, B., Popov, C., Shanov, V. and Filipov, D., (1993) Pyrolytic LCVD of silicon using a pulsed visible laser - experiment and modelling, Mat.Res.Soc.Symp. W Vol. 334 - Gas Phase and Surface Chemistry in Electronic Materials Processing - November 29 - December 4, 1993, Boston, USA.

    Google Scholar 

  20. Gates S.M., Greenlief, C.M., Beach, D.B. and Holbert P.A., (1990) Decomposition of silane on Si(111)-(7X7) and Si(100)-(2X1) surfaces below 500°C, Journal of Chemical Physics 92, 3144–3153.

    Article  ADS  Google Scholar 

  21. Jasinski, J.M. and Gates S.M., (1991) Silicon chemical vapor deposition one step at a time: Fundamental studies of silicon hydride chemistry, Accounts of Chemical Research 24, 9–15.

    Article  Google Scholar 

  22. Buss, R.S., Ho, P., Breiland, W.G. and Coltrin, M.E., (1988) Reactive sticking coefficients for silane and disilane on polycrystalline silicon, Journal of Applied Physics 63, 2808–2819.

    Article  ADS  Google Scholar 

  23. Auger, G., Tonneau, D. and Patella, Y., (1988) Evidence of a photon effect during the visible laser-assisted deposition of polycrystalline silicon from silane, Applied Physics Letters 52, 1062–1064.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ivanov, B., Popov, C., Shanov, V., Filipov, D. (1996). LCVD with Copper Vapour and Copper Bromide Vapour Lasers — Review. In: Kossowsky, R., Jelinek, M., Walter, R.F. (eds) High Power Lasers — Science and Engineering. NATO ASI Series, vol 7. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8725-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8725-9_32

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4679-6

  • Online ISBN: 978-94-015-8725-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics