Skip to main content

Rapid Thermal Chemical Vapour Deposition of Epitaxial Si and SiGe

Low-Temperature Epitaxy in Production

  • Chapter
Advances in Rapid Thermal and Integrated Processing

Part of the book series: NATO ASI Series ((NSSE,volume 318))

Abstract

Epitaxy of Si on Si substrates by CVD is an old technique. Developed to improve the performance of bipolar transistors and integrated circuits, it is finding increasing application in CMOS circuits as well. In both cases an epitaxial layer is grown on top of a substrate to contain the active devices. Shrinking device dimensions, laterally as well as vertically, require small transition widths for a change in dopant type or concentration and traditional silicon-epi growth with its high deposition temperatures is becoming more and more incompatible with modern wafer processing. Outdiffusion of dopants and autodoping preclude the use of conventional epi in tailoring dopant profiles in e.g. the base of a bipolar transistor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wolf, S. and Tauber, R.N. (1986) Silicon Processing for the VLSI era, Vol.1 Ch.5, Silicon epitaxial film growth, Lattice Press, Sunset Beach, California.

    Google Scholar 

  2. Pearce, C.W. (1983) Epitaxy, in S.M. Sze (ed.),VLSI technology, McGraw-Hill Book Company, New York, pp. 51–92.

    Google Scholar 

  3. Srinivasan, G.R. and Meyerson, B.S. (1987) Current status of reduced temperature silicon epitaxy by chemical vapor deposition, J. Electrochem. Soc. 134, 1518–1524.

    Article  Google Scholar 

  4. People, R. and Bean, J.C. (1985) Calculation of critical layer thickness versus lattice mismatch for GexSi1-x/Si strained-layer heterostructures, Appl. Phys. Leu. 47, 322–324.

    Article  ADS  Google Scholar 

  5. Houghton, D.C., Gibbings, C.J., Tuppen, C.G., Lyons, M.H. and Halliwell, M.A.G. (1990) Equilibrium critical thickness for Sii-xGex strained layers on (100) Si, Appl. Phys. Lett. 56, 460–462.

    Article  ADS  Google Scholar 

  6. Houghton, D.C., Perovic, D.D., Baribeau, J.-M. and Weatherly, G.C. (1990) Misfit strain relaxation in GexSi1-x/Si heterostructures: the structural stability of buried strained layers and strained-layer superlattices, J. Appl. Phys. 67, 1850–1862.

    Article  ADS  Google Scholar 

  7. Iyer, S. S., Patton, G.L., Stork, J. M. C., Meyerson, B.S. and Harame, D.L. (1989) Heterojunction bipolar Transistors using Si-Ge alloys, IEEE Trans. El. Dev. 36, 2043–2064.

    Article  ADS  Google Scholar 

  8. Bean, J.C. (1992) Silicon-based semiconductor heterostructures: column IV bandgap engineering, Proc. IEEE 80, 571–587.

    Article  ADS  Google Scholar 

  9. Meyerson, B.S., Ganin, E., Smith, D.A. and Nguyen, T.N. (1986) Low temperature silicon epitaxy by hot wall ultrahigh vacuum/low pressure chemical vapor deposition techniques: surface optimization, J. Electrochem. Soc. 133, 1232–1235.

    Article  ADS  Google Scholar 

  10. Meyerson, B.S., LeGoues, F.K., Nguyen, T.N. and Harame, D.L. (1987) Nonequilibrium doping effects in low-temperature epitaxial silicon, Appl. Phys. Lett. 50, 113–115.

    Article  ADS  Google Scholar 

  11. Meyerson, B.S., Uram, K.J. and LeGoues, F.K. (1988) Cooperative growth phenomena in silicon/germanium low temperature epitaxy, Appl. Phys. Lett. 53, 2555–2557.

    Article  ADS  Google Scholar 

  12. Smith, F.W. and Ghidini, G. (1982) Reaction of oxygen with Si (111) and (100). Critical conditions for the growth of SiO2, J. Electrochem. Soc. 129, 1300–1306.

    Article  Google Scholar 

  13. Ghidini, G. and Smith, F.W. (1984) Interaction of H20 with Si (111) and Si (100). Critical conditions for the growth of SiO2, J. Electrochem. Soc. 131, 2924–2928.

    Article  Google Scholar 

  14. Meyerson, B.S. (1992) UHV/CVD growth of Si and Si:Ge alloys: chemistry, physics, and device applications, Proc. IEEE 80, 1592–1608.

    Article  Google Scholar 

  15. Patton, G.L., Comfort, J.H., Meyerson, B.S., Crabbé, E.F., Scilla, G.J., de Frésart, E., Stork, J.M.C., Sun, J.Y.-C., Harame, D.L. and Burghartz, J.N (1990) 75-GHz fT SiGe-base Heterojunction Bipolar Transistors, IEEE El. Dev. Lett. 11, 171–173.

    Article  ADS  Google Scholar 

  16. Gibbons, J.F., Gronet, C.M. and Williams, K.E. (1985) Limited reaction processing: silicon epitaxy, Appl. Phys. Lett. 47, 721–723.

    Article  ADS  Google Scholar 

  17. Hoyt, J.L., King, C.A., Noble, D.B., Gronet, C.M., Gibbons, J.F., Scott, M.P., Laderman, S.S., Rosner, S.J., Nauka, K., Turner, J. and Kamins, T.I. (1990) Limited reaction processing: Growth of Si1-xGex/Si for heterojunction bipolar transistor applications, Thin Solid Films 184, 93–106.

    Article  ADS  Google Scholar 

  18. King, C.A., Hoyt, J.L., Noble, D.B., Gronet, C.M., Gibbons, J.F., Scott, M.P., Kamins, T. and Laderman, S.S. (1989) Electrical and material quality of Si/Si1-xGex/Si p-n heterojunctions produced by limited reaction processing, IEEE El. Dev. Lett. 10, 159–161.

    Article  ADS  Google Scholar 

  19. Sedgwick, T.O., Berkenblit, M. and Kuan, T.S. (1989) Low-temperature selective epitaxial growth of silicon at atmospheric pressure, Appl. Phys. Lett. 54, 2689–2691.

    Article  ADS  Google Scholar 

  20. Agnello, P.D. and Sedgwick, T.O. (1992) Inhibition of silicon oxidation during low temperature epitaxial growth, J. Electrochem. Soc. 139, 1140–1146.

    Article  Google Scholar 

  21. Robinson, McD. and Lawrence, L.H. (1988) Characterization of high growth rate epitaxial silicon from a new single wafer reactor, in D.C. Gupta (ed), 5th International symposium on semiconductor processing, ASTM STP 990, American Society for Testing and Materials, Philadelphia.

    Google Scholar 

  22. Agnello, P.D., Sedgwick, T.O., Meyer, D. and Ferro, A.P. (1990) Growth of silicon-germanium alloys by atmospheric-pressure chemical vapor deposition at low temperatures, in S.S. Iyer, D.C. Houghton and M.L. Green (eds.), Proceedings of the first topical symposium on silicon based heterostructures (37th AVS Symposium), pp. 46–50.

    Google Scholar 

  23. Kamins, T.I. and Meyer, D.J. (1990) Epitaxial deposition of strained Si1-xGex layers by atmospheric-pressure CVD, 78th ECS Meeting Ext. Abstr. 90–2, 685–686.

    Google Scholar 

  24. De Boer, W.B. and Meyer, D.J. (1990) Low-temperature chemical vapor deposition of epitaxial Si and SiGe layers at atmospheric pressure, Appl. Phys. Lett. 58, 1286–1288.

    Article  Google Scholar 

  25. Van Oostrum, K.J., Zalm, P.C., de Boer, W.B., Gravesteijn, D.J. and Maes, J.W.F. (1992) Characterization of epitaxial layers by the depth dependence of boron diffusivity, Appl. Phys. Lett. 61, 1513–1515.

    Article  ADS  Google Scholar 

  26. Grützmacher, D.A., Sedgwick, T.O., Powell, A., Tejwani, M., Iyer, S.S., Cotte, J. and Cardone, F. (1993) Ge segregation in SiGe/Si heterostructures and its dependence on deposition technique and growth atmosphere, Appl. Phys. Lett. 63, 2531–2533.

    Article  ADS  Google Scholar 

  27. Sedgwick, T.O., Agnello, P.D., Nguyen Ngoc, D., Kuan, T.S. and Scilla, G. (1991) High phosphorus doping of epitaxial silicon at low temperature and atmospheric pressure, Appl. Phys. Lett. 58, 1896–1898.

    Article  ADS  Google Scholar 

  28. Agnello, P.D., Sedgwick, T.O and Cotte, J. (1993) Growth rate enhancement of heavy n- and p-type doped silicon deposited by atmospheric-pressure chemical vapor deposition at low temperatures, J. Electrochem. Soc. 140, 2703–2709.

    Article  Google Scholar 

  29. Lapiano-Smith, D.A. and McFeely, F.R. (1992) Mechanism for diborane induced selectivity loss in the chemical vapor deposition of silicon from SiH2C12, J. Appl. Phys. 71, 4544–4546.

    Article  ADS  Google Scholar 

  30. Kamins, T.I., Vook, D.W., Yu, P.K. and Turner, J.E. (1992) Kinetics of selective epitaxial deposition of Si1-xGex, Appl. Phys. Lett. 61, 669–671.

    Article  ADS  Google Scholar 

  31. Kamins, T.I. (1993) Pattern sensitivity of selective Si1-xGex chemical vapor deposition: Pressure dependence, J. Appl. Phys. 74, 5799–5802.

    Article  ADS  Google Scholar 

  32. Sato, F., Hashimoto, T., Tatsumi, T., Kitahata, H. and Tashiro T. (1992) Sub20psec ECL circuits with 50GHz fmax self-aligned SiGe HBT’s, IEEE IEDM, Technical Digest, 397–400.

    Google Scholar 

  33. Pruijmboom, A. (1995) IEEE IEDM, Technical Digest, in press.

    Google Scholar 

  34. Sato, F., Tatsumi, T., Hashimoto, T., and Tashiro, T. (1994) A super self-aligned selectively grown SiGe base (SSSB) bipolar transistor fabricated by cold-wall type UHV/CVD technology, IEEE Trans. El. Dev. 41, 1373–1378.

    Article  ADS  Google Scholar 

  35. Lou, J.-C., Galewski, C. and Oldham, W.G. (1991) Dichlorosilane effects on lowtemperature selective silicon epitaxy, Appl. Phys. Lett. 58, 59–61.

    Article  ADS  Google Scholar 

  36. Meyerson, B.S., Himpsel, F.J. and Uram, K.J. (1990) Bistable conditions for lowtemperature silicon epitaxy, Appl. Phys. Lett. 57, 1034–1036.

    Article  ADS  Google Scholar 

  37. Meyerson, B.S. (1994) High-speed silicon-germanium electronics, Scientific American March 1994, 42–47.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

de Boer, W.B. (1996). Rapid Thermal Chemical Vapour Deposition of Epitaxial Si and SiGe. In: Roozeboom, F. (eds) Advances in Rapid Thermal and Integrated Processing. NATO ASI Series, vol 318. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8711-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8711-2_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4696-3

  • Online ISBN: 978-94-015-8711-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics