Skip to main content

Microstructure-Based Finite Element Analysis of Heterogeneous Media

  • Chapter
  • 426 Accesses

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 35))

Abstract

A microstructure-based finite element analysis is presented in this paper for the mechanical response of two dimensional heterogeneous materials with randomly dispersed inclusions. A special n-sided polygonal element containing an elastic inclusion is developed on the basis of the Hellinger-Reissner principle and the hybrid finite element method. The element formulations are derived by decomposing the original problem into inclusion and matrix problems and relating each other through consistency conditions at their interface. For circular inclusions, the proposed method is verified against simple analytical solutions and shown to be suitable even for extreme cases such as porous materials and materials with rigid inclusions. It is also demonstrated that the number of degrees of freedom necessary to obtain accurate results can be significantly reduced by using the proposed method. The effect of random distributions of inclusions on local stress concentration factors can also be easily evaluated using the proposed method.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. D. Eshelby, ‘The determination of the elastic field of an ellipsoidal inclusion, and related problems’, Proc. Roy. Soc. A, 241, 376–396 (1957).

    Google Scholar 

  2. J. D. Eshelby, ‘The elastic field outside an ellipsoidal inclusion’, Proc. Roy. Soc. A, 252, 561–569 (1959).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. M. A. Jaswon and R. D. Bhargava, ‘Two dimensional elastic inclusion problems’, Proc. Camb. Phil. Soc. Math. Phys. Sci., 57, 669–680 (1961).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. R. D. List and J. P. O. Silberstein, ‘Two dimensional elastic inclusion problems’, Proc. Camb. Phil. Soc. Math. Phys. Sci., 62, 303–311 (1966).

    Article  ADS  Google Scholar 

  5. P. S. Theocaris and N. I. Ioakimidis, `The inclusion problem in plane elasticity’, Q, J. Mech. Appl. Math., 30, 437–448 (1977).

    Article  MathSciNet  MATH  Google Scholar 

  6. T. Honein and G. Hermann, “On the bonded inclusions with circular or straight boundaries in plane elastostatics’, J. Appl. Mech., 57, 850–856 (1990).

    Article  ADS  MATH  Google Scholar 

  7. S. X. Gong and S. A. Meguid, `Interacting circular inhomogeneities in plane elastostatics’, Acta Mechanica, 99, 49–60 (1993).

    Article  MATH  Google Scholar 

  8. N I. Muskhelishvili, ‘Some basic Problems of the mathematical theory of elasticity’, P. Noordhoff Ltd., Groningen, Holland, pp. 120–129 (1953).

    Google Scholar 

  9. T. Nakamura and S. Suresh, ‘Effects of thermal residual stresses and fiber packing on deformation of metal-matrix composites’, Acta Metall. Mater., 41, No. 6, pp. 1665–1681 [ 1993 ].

    Article  Google Scholar 

  10. S. Ghosh and S. N. Mukhopadhyay, ‘A material based finite element analysis of heterogeneous media involving Dirichlet tessellations’, Computer Methods in Applied Mechanics and Engineering, 104, pp. 211–247 (1993).

    Article  ADS  MATH  Google Scholar 

  11. M. L. Accorsi, ‘A method for modeling microstructural material discontinuities in the finite element analysis’, Int. J. Numer. Methods Eng., 26, pp. 2187–2197 (1988).

    Article  MATH  Google Scholar 

  12. M. L Accorsi and R Chamarajanagar, ‘Numerical validation of a hybrid finite element method using eigenstrain’, Computers & Structures, 41, pp. 1065–1071 (1990).

    Article  Google Scholar 

  13. J. Zhang and N. Katsube, ‘Problems related to application of transformation strains in a finite element analysis’, Int. J. Numer. Methods Eng., 37, pp. 3185–3193 (1994).

    Article  MATH  Google Scholar 

  14. E. Wachspress, ‘A rational finite element basis’, Academic Press, New York, 1975.

    Google Scholar 

  15. G. F. Carey and J. T. Oden, ‘Finite elements: a second course’, II, Prentice-Hall, Inc., New Jersey, 1983.

    MATH  Google Scholar 

  16. T. H. H. Pian, ‘Derivation of element stiffness matrices by assumed stress distributions’, AIAA J., 2, 1333–1336 (1964).

    Article  Google Scholar 

  17. P. Tong and T. H. H. Pian, ‘A variational principle and the convergence of a finite-element method based on assumed stress distribution’, Int. J. Solids Structures, 5, 463–472 (1969).

    Article  MATH  Google Scholar 

  18. T. H. H. Pian and D. P. Chen, ‘Alternative ways for formulation of hybrid stress elements’, Int. J. Numer. Methods Eng., 18, 1679–1684 (1982).

    Article  MATH  Google Scholar 

  19. P. Tong, T. H. H. Pian and S. J. Lasry, ‘A hybrid-element approach to crack problems in plane elasticity’, Int. J. Numer. Methods Eng., 7, pp. 297–308 (1973).

    Article  MATH  Google Scholar 

  20. R Piltner, ‘Special finite elements with holes and internal cracks’, Int. J. Numer. Methods Eng., 21, pp. 1471–1485 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Zhang and N. Katsube, ‘A hybrid finite element method for heterogeneous materials with randomly dispersed rigid inclusions’, to appear in Int. J. Numer. Methods Eng.

    Google Scholar 

  22. J. Zhang and N. Katsube, °A hybrid finite element method for heterogeneous materials with randomly dispersed elastic inclusions’, to appear in Int. J. Finite Element Method in Design and Analysis.

    Google Scholar 

  23. T. H. H. Pian and D. P. Chen, ‘On the suppression of zero energy deformation modes’, Int. J. Numer. Methods Eng., 19, 1741–1752 (1983).

    Article  MATH  Google Scholar 

  24. T. H. H. Pian and C. C. Wu, ‘A rational approach for choosing stress terms for hybrid finite element formulations’, Int..): Numer. Methods Eng., 26, 2331–2343 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  25. Hibbitt, Karlsson & Sorensen, Inc., ‘ABAQUS user’s manual’, Version 4.8, 1989.

    Google Scholar 

  26. B. M. Rabeeh and W. O. Soboyejo, unpublished research work.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zhang, J., Katsube, N. (1996). Microstructure-Based Finite Element Analysis of Heterogeneous Media. In: Selvadurai, A.P.S. (eds) Mechanics of Poroelastic Media. Solid Mechanics and Its Applications, vol 35. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8698-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8698-6_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4513-3

  • Online ISBN: 978-94-015-8698-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics