Skip to main content

Part of the book series: Mathematics and Its Applications ((MAIA,volume 359))

Abstract

Given an extended Tchebycheff space of dimension m + 1, we associate with it a normal curve C in real projective m—space P m. The curve C has the properties that any hyperplane intersects it in at most m points and that through any point of P m there pass at most m of its osculating hyperplanes. This allows us to study extended Tchebycheff spaces and Tchebycheffian splines in a geometric way. We introduce a generalized blossom which directly leads to generalizations of Bézier und B—spline curves. Furthermore, we obtain connections to isotropic curve theory and to recent results of Carnicer and Peña on B—bases and extensibility of Tchebycheff systems. The paper both surveys recent research and presents new results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barry, P. J., De Boor-Fix dual functionals and algorithms for Tchebycheffian B-spline curves, preprint.

    Google Scholar 

  2. Boehm, W. and H. Prautzsch, Geometric Concepts for Geometric Design, AKPeters, Wellesley, 1994.

    MATH  Google Scholar 

  3. Bol, G., Projektive Differentialgeometrie 1, Vandenhoeck u. Ruprecht, Göttingen, 1950.

    Google Scholar 

  4. Brauner, H., Geometrie des zweifach isotropen Raumes I, II, III, J. reine u. angew. Math 224 (1966), 118–146; 226 (1967), 132–158; 228 (1967), 38–70.

    MathSciNet  MATH  Google Scholar 

  5. Carnicer, J. M. and J. M. Peña, Shape preserving representations and optimality of the Bernstein basis, Advances in Computational Mathematics 1 (1993), 173–196.

    Article  MathSciNet  MATH  Google Scholar 

  6. Carnicer, J. M. and J. M. Peña, Totally positive bases for shape preserving curve design and optimality of B-splines, Computer Aided Geometric Design (1994), to appear.

    Google Scholar 

  7. Carnicer, J. M. and J. M. Peña, On transforming a Tchebycheff system into a strictly totally positive system, preprint.

    Google Scholar 

  8. de Casteljau, P., Formes á pôles, Mathématiques et CAO 2, Hermes, Paris 1985.

    Google Scholar 

  9. Derry, D., The duality theorem for curves of order n in n-space, Canad J. Math. 3 (1950), 159–163.

    Article  MathSciNet  Google Scholar 

  10. Dyn, N. and A. Ron, A., Recurrence relations for Tchebycheffian B-splines, J. Analyses Math. 51 (1988), 118–138.

    Article  MathSciNet  MATH  Google Scholar 

  11. Eck, M., MQ-curves are curves in tension, in Mathematical Methods in Computer Aided Geometric DesignII, T. Lyche and L. L. Schumaker (eds.), Academic Press, New York, 1992.

    Google Scholar 

  12. Farin, G., Curves and Surfaces for Computer Aided Geometric Design, 3rd edition, Academic Press, 1993.

    Google Scholar 

  13. Farin, G., NURBS for Rational Curve and Surface Design, AK Peters, Wellesley, 1994.

    Google Scholar 

  14. Gasca, M. and J. M. Peña, Corner cutting algorithms and totally positive matrices, in Curves and Surfaces II, P. J. Laurent, A. LeMehauté and L. L. Schumaker (eds.), AIKPeters, Wellesley, 1994.

    Google Scholar 

  15. Gonsor, D. and M. Neamtu, Non-polynomial polar forms, in Curves and Surfaces in Geometric Design, P. J. Laurent, A. LeMehauté and L. L. Schumaker (eds.), AKPeters, Wellesley, 1994, 193–200.

    Google Scholar 

  16. Gonsor, D. and M. Neamtu, Null spaces of differential operators, polar forms and splines, preprint.

    Google Scholar 

  17. Goodman, T. N. T. and C. A. Micchelli, Corner cutting algorithms for the Bézier representation of free form curves, Linear Algebra Appl. 99 (1988), 225–252.

    Article  MathSciNet  MATH  Google Scholar 

  18. Goodman, T. N. T., Shape preserving representations, in Mathematical Methods in Computer Aided Geometric Design, T. Lyche and L. L. Schumaker (eds.), Academic Press, Boston, 1989, 333–351.

    Google Scholar 

  19. Goodman, T. N. T., Inflections on curves in two and three dimensions, Computer Aided Geometric Design 8 (1991), 37–50.

    Article  MathSciNet  MATH  Google Scholar 

  20. Haupt, O. and H. Künneth, Geometrische Ordnungen, Springer, Berlin/Heidelberg, 1967.

    Book  MATH  Google Scholar 

  21. Hoschek, J. and D. Lasser, Grundlagen der geometrischen Datenverar-beitung, Teubner, Stuttgart, 1992.

    Book  Google Scholar 

  22. Ikarlin, S. and W. J. Studden, Tchebycheff Systems. With Applications in Analysis and Statistics, Wiley-Interscience, New York, 1966.

    Google Scholar 

  23. Karlin, S., Total positivity I, Stanford University Press, Stanford, 1968.

    MATH  Google Scholar 

  24. Koch, P. E. and T. Lyche, Exponential B-splines in tension, in Approx-imation Theory VI, C. K. Chui, L. L. Schumaker and J. D. Ward (eds.), Academic Press, New York, 1989, 361–364.

    Google Scholar 

  25. Kulkarni, R., P. J. Laurent, Q-splines, Numerical algorithms,1,1991,45–73.

    Article  MathSciNet  MATH  Google Scholar 

  26. Kulkarni, R., P. J. Laurent and M. L. Mazure, Non affine blossoms and subdivision for Q-splines, in Mathematical Methods in Computer >Aided Geometric Design II, T. Lyche and L. L. Schumaker (eds.), Academic Press, Boston, 1992, 367–380.

    Google Scholar 

  27. Lyche, T., A recurrence relation for Chebyshevian B-splines, Constr. Ap-prox. 1 (1985), 155–173.

    Article  MathSciNet  MATH  Google Scholar 

  28. Mazure, M. L. and P. J. Laurent, Affine and non affine blossoms, Research Report RR 913, LMC-Iimag, Université Joseph Fourier, Grenoble, 1993.

    Google Scholar 

  29. Pottmann, H., The geometry of Tchebycheffian splines, Computer Aided Geometric Design 10 (1993), 181–210.

    Article  MathSciNet  MATH  Google Scholar 

  30. Pottmann, H. and M. Wagner, M., Helix splines as an example of affine Tchebycheffian splines, Advances in Conp. Math. 2(1994). 123–142.

    Article  MathSciNet  MATH  Google Scholar 

  31. Ramshaw, L., Blossoms are polar forms, Computer Aided Geometric Design 6 (1989), 323–358.

    Article  MathSciNet  MATH  Google Scholar 

  32. Scherk, P., Uber differenzierbare Kurven und Bögen II, Casopis pro péstovani matematiky a fysiky 66 (1937), 172–191.

    MATH  Google Scholar 

  33. Schmeltz, G., Variationsreduzierende Iturvendarstellungen und Krümmungskriterien für Bézierflächen, Dissertation, Darmstadt, 1992.

    Google Scholar 

  34. Schumaker, L. L., Spline Functions: Basic Theory, Wiley-Interscience, New York, 1981.

    MATH  Google Scholar 

  35. Seidel, H. P., A new multiaffine approach to B-splines, Computer Aided Geometric Design 6 (1989), 23–32.

    Article  MathSciNet  MATH  Google Scholar 

  36. Seidel, H. P., Polar forms for geometrically continuous spline curves of arbitrary degree, ACM Transactions on Graphics 12 (1993), 1–34.

    Article  MATH  Google Scholar 

  37. Sommer, M. and H. Strauss, A characterization of Descartes systems in Haar subspaces, J. Approx. Theory 57 (1989), 104–116.

    Article  MathSciNet  MATH  Google Scholar 

  38. Stolfi, J., Oriented Projective Geometry, Academic Press, San Diego, 1991.

    MATH  Google Scholar 

  39. Wagner, M. G. and H. Pottmann, Symmetric Tchebycheffian B-spline schemes, in Curves and Suirfaces in Geometric Design, P. J. Laurent, A. LeMehauté and L. L. Schumaker (eds.), AIKPeters, Wellesley, 1994, 483–490.

    Google Scholar 

  40. Yaglom, I. M., A Simple Non-Euclidean Geometry and its Physical Basis, Springer, New York, 1979.

    MATH  Google Scholar 

  41. Zalik, R. A., On transforming a Tchebycheff system into a complete Tchebycheff system, J. Approx. Theory 20 (1977), 220–222.

    Article  MathSciNet  MATH  Google Scholar 

  42. Zalik, R. A. and D. Zwick, On extending the domain of definition of Cebysev and wealk Cebysev systems, J. Approx. Theory 57 (1989), 202–210.

    Article  MathSciNet  MATH  Google Scholar 

  43. Zielke, R., Discontinuous Cebysev systems, Lecture Notes in Mathematics 707, Springer-Verlag, New York, 1979.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mazure, ML., Pottnann, H. (1996). Tchebycheff Curves. In: Gasca, M., Micchelli, C.A. (eds) Total Positivity and Its Applications. Mathematics and Its Applications, vol 359. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8674-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8674-0_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4667-3

  • Online ISBN: 978-94-015-8674-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics