Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 304))

Abstract

The paper gives an introduction to the basic laws, mainly on a macroscopic scale, for the transport processes which occur in a pore and void system during the service life or the testing of a porous building material. Basic equations for pure potential mass flow, convective flow, and some combined flow mechanisms are presented and discussed. Some versions of the mass balance equation are shown and the binding properties required for solving the mass balance equation are discussed. Apparent transport properties frequently applied when using Fick’s 2nd law are derived. Basic laws describing the distribution profiles during steady state and non-steady state flow processes are summarized. Finally, theoretical and empirical relationships between some transport properties are dealt with.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kropp, J., Hilsdorf, H.K., Grube, H., Andrade, C. & Nilsson, L.-O. (1994) Transport mechanisms and definitions. Chapter 2 of Performance Criteria for Concrete Curability–State-of-the-art-report, RILEM TC 116-PCD, Chapman & Hall, London.

    Google Scholar 

  2. Nilsson, L.-O. & Tang, L. (1994) Relations between different transport parameters. Chapter 3 of Performance Criteria for Concrete Curability— State-of-the-art-report, RILEM TC 116-PCD, Chapman & Hall, London.

    Google Scholar 

  3. Taylor, H.F.W. (1990) Cement Chemistry, Academic Press Ltd, London.

    Google Scholar 

  4. Arfwidsson, J. (1994) Isothermal moisture processes in porous materials (in Swedish). Report TVBH-1007, Dep of Building Technology, Lund Institute of Technology, Lund.

    Google Scholar 

  5. Bigas, J.-P., Lambert, F. & Ollivier, J.-P. (1995) Modelisation des interactions entre ions chlore et un mortier de ciment Portland, to be published in Materiaux & Constructions 28.

    Google Scholar 

  6. Chatterji, S. & Kawamura, M. (1992) Electrical double layer, ion transport and reactions in hardened cement paste, Cement & Concrete Research 22, 774–782.

    Article  CAS  Google Scholar 

  7. Tang, L. & Nilsson, L.-O. (1992) Rapid determination of chloride diffusivity of concrete by applying an electrical field, ACI Materials Journal 49, 49–53.

    Google Scholar 

  8. Volkwein, A. (1991) Untersuchungen über das Eindringen von Wasser und Chlorid in Beton, Heft 1, Baustoffinstitut, Technische Universität München.

    Google Scholar 

  9. Nilsson, L.-O. (1980) Hygroscopic moisture in concrete — drying, measurements and related material properties, Report TVBM-1003, Dep of Building Materials, Lund Institute of Technology, Lund.

    Google Scholar 

  10. Hedenblad, G. (1993) Moisture permeability of mature concrete, cement mortar and cement paste, Report TVBM-1014, Dept. of Building Materials, Lund Institute of Technology, Lund.

    Google Scholar 

  11. Nilsson, L.-O. (1992) A theoretical study on the effects of non-linear chloride binding on chloride diffusion measurements in concrete, Publ P-92:13, Dep of Building Materials, Chalmers University of Technology, Göteborg, Sweden.

    Google Scholar 

  12. Nilsson, L.-O., Massat, M. & Tang, L. (1994) The effect of non-linear chloride binding on the prediction of chloride penetration into concrete structures, Proc. 3rd CANMET/ACI Intl. Confr. on Durability of Concrete, ACISP-145, 469–486.

    Google Scholar 

  13. Nilsson, L.-O., (1993) Textbook on Moisture Mechanics, Dep of Building Materials, Chalmers University of Technology, Göteborg, Sweden.

    Google Scholar 

  14. Massat, M. (1991) Caracterisation de la microfissuration, de la permeabilite et la diffusion d’un beton: Application au stockage des dechets radioactifs. These du doctorat INSA, Genie civil, Laboratoire Materiaux & Durabilité des Constructions, Toulouse, France.

    Google Scholar 

  15. Fagerlund, G. (1982) Moisture properties (in Swedish). Chapter 8.6 in Concrete Hand Book. Materials, 2nd edition, Svensk Byggtjänst Stockholm.

    Google Scholar 

  16. Garboczi, E.J. (1990) Permeability, diffusivity and microstructural parameters: A critical review, Cement & Concrete Research 20, 591–601.

    Article  CAS  Google Scholar 

  17. Gaber, K. (1988) Influence of mix proportions and components on the diffusion coefficient and the permeability of concrete. Darmstadt Concrete 3, 39–48.

    Google Scholar 

  18. Kropp, J. (1983) Karbonatisierung und Transportvorgänge in Zementstein, Dissertation Universität Karlsruhe, Germany.

    Google Scholar 

  19. Lawrence, C.D. (1984) Transport of oxygen through concrete. British Ceramics Proceedings 35, 277–293.

    CAS  Google Scholar 

  20. Lawrence, C.D. (1986) Measurement of permeability. 8th International Congress on the Chemistry of Cement, Rio de Janeiro, Brazil.

    Google Scholar 

  21. Gräf, H. & Grube, H. (1986) Einflub der Zusammensetzung und der Nachbehandlung des Betons auf seine Gasdurchlässigkeit. Beton 36, 426–429 &

    Google Scholar 

  22. Gräf, H. & Grube, H. (1986) Einflub der Zusammensetzung und der Nachbehandlung des Betons auf seine Gasdurchlässigkeit. Beton 36, 473–476.

    Google Scholar 

  23. Jung, M. (1969) Beiträge zur Gütebewertung korrosions- und wasserdichter Betone. Dissertation Weimar, Germany.

    Google Scholar 

  24. Whiting, D. (1988) Permeability of selected concretes, in ACI Special Publication: Permeability of Concrete, SP-108, 195–222.

    Google Scholar 

  25. Bamforth, P.B. (1987) The relationship between permeability coefficients for concrete obtained using liquid and gas. Magazine of Concrete Research 39, 3–11.

    Article  CAS  Google Scholar 

  26. Tang, L. & Nilsson, L.-O. (1992) A study on the quantitative relationship between permeability and pore size distribution of hardened cement pastes, Cement & Concrete Research 22, 541–550.

    Article  CAS  Google Scholar 

  27. Grube, H. & Rechenberg, (1987) Betonabtrag durch chemisch angreifende saure Wässer. Betong 37, Heft 11& 12.

    Google Scholar 

  28. Yu, S.W. & Page, C.L. (1991) Diffusion in cementitious materials: 1. Comparative study of chloride and oxygen diffusion in hydrated cement pastes, Cement & Concrete Research 21, 581–588.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nilsson, LO., Tang, L. (1996). Transport Mechanisms in Porous Materials. In: Jennings, H., Kropp, J., Scrivener, K. (eds) The Modelling of Microstructure and its Potential for Studying Transport Properties and Durability. NATO ASI Series, vol 304. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8646-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8646-7_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4653-6

  • Online ISBN: 978-94-015-8646-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics