Skip to main content

Thermo-Mechanical Fatigue Life Prediction Method in Terms of Energy

  • Chapter
  • 463 Accesses

Abstract

Thermo-mechanical fatigue (TMF) problems are encountered in many industries, such as aerospace, power generation, mechanical engineering etc. The last decade has seen increased effort on modelling material behaviour under high operating temperatures and severe TMF environments. One of the current problems is formulation of the method allowing the design and evaluation of engineering systems operating under TMF conditions. In the literature few thermo-mechanical models have been presented. However, none of them has given satisfactory results for all thermo-mechanical loading histories. Life prediction models for TMF generally take the form:

  1. (1)

    frequency-modified strain-life or stress-life approaches [1–3];

  2. (2)

    parametric damage approaches [4–7];

  3. (3)

    continuum damage approaches [8–9];

  4. (4)

    damage rate approaches [10–12] including microcrack propagation models [13].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Coffin, L.F., Fatigue at High Temperatures-Prediction and Interpretation, Proc. Institution of Mechanical Engineers, 188, (1974), London.

    Google Scholar 

  2. Coffin, L.F., Overview of Temperature and Environmental Effects on Fatigue of Structural Metals, Fatigue: Environment and Temperature Effects, J.J. Burke and V. Weiss, Eds., Plenum Press, New York, (1983), pp. 1–40.

    Google Scholar 

  3. Ostergren, W.J., A damage function and associated failure equations for predicting hold time and frequency effects in elevated temperature low cycle fatigue, Journal of Testing and Evaluation, 4, (1976), 327–339.

    Article  CAS  Google Scholar 

  4. Manson, S.S. et al. Creep-Fatigue Analysis by Strain Range Partioning, NACA TM X-67838. 1971.

    Google Scholar 

  5. Saltsman, J.F. and Halford, G.R., An update of the total-strain version of strain range pardoning, ASTM STP 942 Low Cycle Fatigue, Philadelphia, (1988), pp. 329–341.

    Google Scholar 

  6. Neu, R.W. and Sehitoglu, H., Thermo-mechanical Fatigue, Oxidation and Creep.Part I. Damage Mechanisms, Metals Transactions A, 20A, (1989).

    Google Scholar 

  7. Neu, R.W. and Sehitoglu, H., Thermomechanical Fatigue, Oxidation and Creep:Part I:Life Prediction, Metals Transactions A, 20A, (1989), pp. 1769–1783.

    Article  Google Scholar 

  8. Kachanov, L., Fundamentals of Fracture Mechanics, Nauka, Moscow, 1974.

    Google Scholar 

  9. Rabotnov, Y.N., Creep Problems in Structural Members, Nort Holland Publishing, Amsterdam, 1969.

    Google Scholar 

  10. Hult, J., Continuum Damage Mechanics — Capabilities Limitations and Promises, Mechanisms of Deformation and Fracture, Pergamon, Oxford, (1979), pp.233–247.

    Google Scholar 

  11. Chaboche, J.L., Continuous Damage Mechanics — A Tool to Describe Phenomena Before Crack Initiation, Nuclear Eng. and Design, 64, (1981), 233–247.

    Article  Google Scholar 

  12. Lemaitre, J. (1979) Damage modelling for predicting of plastic or creep-fatigue in structures, Paper L5–1 SMIRT Conference, Berlin, 1981.

    Google Scholar 

  13. Majumdar, S. and Maiya, P.S., A mechanistic model for time dependent fatigue, ASME Journal of Materials and Technology, 102, (1980), 159–167.

    Article  CAS  Google Scholar 

  14. Golos, K., Plastic strain energy under cyclic multiaxial states of stress. J. of Theoretical and Applied Mechanics. 26, (1988), 171–176.

    Google Scholar 

  15. Golos, K., Energetistic formulation of fatigue strength criterion, Archiwum Budowy Maszyn, XXXV, (1988), No1/2, 5–16.

    Google Scholar 

  16. Golos, K., Fracture energy criterion for fatigue crack propagation, Archiwum Budowy Maszyn, XXXV, (1988), No.3.

    Google Scholar 

  17. Golos, K., Cumulative Fatigue Damage, Materials Science and Engineering, 104A, (1988), 61–65.

    Article  Google Scholar 

  18. Golos, K. and Ellyin, F., A total strain energy density for cumulative fatigue damage, ASME Journal of Pressure Vessel Technology, 110, (1988), 36–41.

    Article  CAS  Google Scholar 

  19. Valanis, K.C., Fundamental consequences of a new intrinsic time measure: plasticity as a limit of the endochronoc theory, Arch. Mechanics, 27, (1980) 171–191.

    Google Scholar 

  20. Ning, J., An endochronic constitutive theory of material under nonproportional cyclic loading Mechanics Research Comunications, 18, (1991), 187–198.

    Article  Google Scholar 

  21. Murakami H. and Read, H.E., Endochronic plasticity: some basic properties of plastic flow and failure, Int. J. Solids Structures, 23, (1987), 133–151.

    Article  Google Scholar 

  22. Taira, S., Relationship Between Thermal Fatigue and Low-cycle Fatigue at Elevated Temperature, ASTM STP 520, Philadelphia, (1973), pp.80–101.

    CAS  Google Scholar 

  23. Shi, H.J., Robin, C. and Pluvinage, G., (1993) Thermal-mechanical fatigue lifetime prediction of an austenic stainless steel, ASTM STP 1211, Philadelphia, pp.105–116.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Golos, K.M. (1996). Thermo-Mechanical Fatigue Life Prediction Method in Terms of Energy. In: Bressers, J., Rémy, L., Steen, M., Vallés, J.L. (eds) Fatigue under Thermal and Mechanical Loading: Mechanisms, Mechanics and Modelling. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8636-8_48

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8636-8_48

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4688-8

  • Online ISBN: 978-94-015-8636-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics