Skip to main content
  • 462 Accesses

Abstract

Titanium aluminide intermetallics, in particular gamma (γ)-based alloys, continue to be of considerable interest for a number of medium to high temperature turbine engine applications in the aerospace and energy production industries [1–3]. This is based on a combination of properties including light weight, good oxidation resistance with respect to conventional titanium alloys, and good high temperature mechanical properties. These materials are also becoming critical to the development of future hydrogen driven energy systems including hypersonic transport [4].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lipsitt, H.A., Titanium Aluminides — An Overview, in Proceedings of MRS Symposium on High Temperature Ordered Intermetallic Alloys, Vol. 39, Materials Research Soc., Boston, 1985, pp. 351–364.

    Google Scholar 

  2. Kim, Y.-W., Intermetallic Alloys Based on Gamma Titanium Aluminide, Journal of Metals 41, (1989), 24–30.

    CAS  Google Scholar 

  3. Froes, F.H., et al.: Review of Synthesis, Properties, and Applications of Titanium Aluminides, J. Mater. Sci. 27 (1992), 5113–5134.

    Article  CAS  Google Scholar 

  4. Jackson, R., et al., Hypersonic Structures and Materials, Aerospace America (1987), 24–30.

    Google Scholar 

  5. Birnbaum, H.K., Hydrogen Related Second Phase Embrittlement of Solids, in Hydrogen Embrittlement and Stress Corrosion Cracking, American Society for Metals, Metals Park, OH, 1984, pp. 153–177.

    Google Scholar 

  6. Stolons N.S., Shea, M. and Castagna, A., Hydrogen Embrittlement of Intermetallic Compounds and Their Composites, in Environmental Effects on Advanced Materials, The Metallurgical Society of AIME, Warrendale, PA, 1991, pp. 3–19.

    Google Scholar 

  7. Takasugi, T. and Hanada, S., Environmental Embrittlement of Gamma Titanium Aluminide, J. Mater. Res. 7, (1992), 2739–2745.

    Article  CAS  Google Scholar 

  8. Liu, C. T. and Kim, Y.-W., Room-Temperature Environmental Embrittlement of Gamma Titanium Aluminide, Scripta Metall Mater. 27 (1992), 599–603.

    Article  CAS  Google Scholar 

  9. Chan, K.S. and Kim, Y.-W., Rate and Environmental Effects on Fracture of a Two-Phase TiAl Alloy, Metall. Trans. A 24, (1993), 113–125.

    Google Scholar 

  10. Nakamura, M., Hashimoto, K. and Tsujimoto, T., Environmental Effect on Mechanical Properties on TiAl Base Alloys, J. Mater. Res. 8, (1993), 68–77.

    Article  CAS  Google Scholar 

  11. Gao, M., Boodey, J.B., Wei, R.P. and Wei, W., Hydrogen Solubility and Microstructure of Gamma Based Titanium Aluminides, Scripta Metall Mater. 27, (1992), 1419–1424.

    Article  CAS  Google Scholar 

  12. Boodey, J.B., Gao, M., Wei, W. and Wei, R.P., Hydrogen Occlusion and Hydride Formation in Tita-nium Aluminides, to be published in Proc. Int. Symp.on Gamma Titanium Aluminides, TMS Annual Meeting, Las Vegas, NV, 12–16 Feb. 1995, The Metallurgical Society of AIME, Warrendale, PA, 1995.

    Google Scholar 

  13. Gao, M., Dunfee, W., Wei, R.P. and Wei, W., Thermal Fatigue of Gamma Titanium Aluminide in Hydrogen, in Fatigue and Fracture of Ordered Intermetallic Materials: I, The Metallurgical Society of AIME, Warrendale, PA, 1994, pp.225–237.

    Google Scholar 

  14. Gao, M., Dunfee, W., Wei, R.P. and Wei, W., Thermal Mechanical Fatigue of Gamma Titanium Aluminide in Hydrogen and Air, to be published in Fatigue and Fracture of Ordered Intermetallic Materials: II, The Metallurgical Society of AIME, Warrendale, PA, 1995.

    Google Scholar 

  15. Gao, M., Dunfee, W., Wei, R.P. and Wei, W., Environmentally Enhanced Thermal-Fatigue Cracking of Gamma-Based Titanium Aluminide Alloy, to be published in Proc. Int. Symposium on Gamma Titanium Aluminides, 124th TMS Annual Meeting, Las Vegas, NV, 12–16 Feb. 1995, The Metallurgical Society of AIME, Warrendale, PA, 1995.

    Google Scholar 

  16. Dunfee, W., Gao, M., Wei, R.P. and Wei, W., Hydrogen Enhanced Thermal Fatigue of γ-Thanium Aluminide, submitted to Scripta Metall Mater. (1995).

    Google Scholar 

  17. Gao, M., Dunfee, W., Miller, C, Wei, R.P. and Wei, W., Thermal Fatigue Testing System for the Study of Gamma Titanium Aluminides in Gaseous Environments, to be published in Thermal-Mechanical Fatigue Behavior of Materials: 2nd Volume, ASTM STP 1263, American Society for Testing and Materials, Philadelphia 1995.

    Google Scholar 

  18. Welsch, G. and Kahveci, A.I., Oxidation Behavior of Titanium Aluminide Alloys, in Oxidation of High-Temperature Intermetallics, The Metallurgical Society of AIME, Warrendale, PA, 1989, pp. 207–218.

    Google Scholar 

  19. Stehlow, R.A. and Savage, H.C., The Permeation of Hydrogen Isotopes Through Stractural Material at Low Pressures and Through Metals with Oxide Film Barriers, Nuclear Technology 22 (1974), 127.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wei, W., Dunfee, W., Gao, M., Wei, R.P. (1996). The Effect of Environment on the Thermal Fatigue Behavior of Gamma Titanium Aluminide. In: Bressers, J., Rémy, L., Steen, M., Vallés, J.L. (eds) Fatigue under Thermal and Mechanical Loading: Mechanisms, Mechanics and Modelling. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8636-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8636-8_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4688-8

  • Online ISBN: 978-94-015-8636-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics