Skip to main content

Mafic and Ultramafic Intrusions into Upper Mantle Peridotites from Fast Spreading Centers of the Easter Microplate (South East Pacific)

  • Conference paper
Mantle and Lower Crust Exposed in Oceanic Ridges and in Ophiolites

Part of the book series: Petrology and Structural Geology ((PESG,volume 6))

Abstract

Recently, the deepest parts (> 4000–6000 m) of the Easter Microplate bounded by fast spreading ridge segments (11–15 cm/yr total rate) were investigated by the R.V. Sonne. One of these areas is located on the western boundary of the microplate along the West Rift zone near 24°13′S and 115°41′W, and is associated with a small transform fault called Terevaka. The other area consists of a depression called the Pito Deep located at the northern tip of a ridge propagator on the East Rift (near 23°60′S and 111°57′W) and forming the eastern boundary of the microplate. A large variety of crustal rocks were recovered from both localities. These include basalts, diabases, ferrogabbros, gabbros and olivine gabbros. Moreover, an entire suite of mantle harzburgite often showing gabbroic and ferrogabbroic veins and dikelets was found in the Tereveka transform fault. Other ultramafic rocks from Terevaka include wall rock dunitic rims and massive plagioclase dunite resulting from the percolation and impregnation of basaltic liquid in peridotite, and also a rare type of clinopyroxenite veins and clusters made of granoblastic chromium diopside.

Petrological study of samples from the Pito Deep indicates the presence of primitive leucotroctolites (An85, Fo86, clinopyroxene Mg#=89). Harzburgites from the Tereveka transform fault show refractory mineral compositions of spinel (Mg#=61–68, Cr#=40–46), olivine (Fo=91, NiO=0.38% ), orthopyroxene (Mg#=91, Al2O3=2.5% , Cr2O3=0.72% ), and trace amounts of clinopyroxene (Mg#=93, Al2O3=2.8% , Cr2O3=1 %, TiO2<0.05%/ ). Based on their Na content, two varieties of diopside are found in the harzburgite: a low Na-type (Na2O=0.06% ) and a normal Natype (Na2O=0.38% ). Peridotites impregnated by gabbroic veins show strong chemical disequilibrium with wall rock spinel and clinopyroxene enriched in Fe, Ti and Al contents (spinel: TiO2=0–6.1 %, Cr#=35–68, Mg#=20–65; clinopyroxene: TiO2=1.1 %, A1203=3.1 %, Cr203=0.8 %, Mg#=87).

We present textural and petrological observations for widespread magmatic intrusion, impregnation and melt-solid reaction between transient basaltic melts and refractory mantle peridotites formed at a fast spreading center. This study describes in detail magmatic features which we believe are part of the accretion process occurring within the lower crust-upper mantle transition zone. Comparisons with other Pacific regions suggest that similar magmatic processes of melt impregnation and reaction occur in a variety of tectonic settings such as transform faults (i.e., Tereveka, Garrett) and propagating rifts (i.e., Pito Deep, Hess Deep). It also reinforces the evidence that interaction of basaltic melt with peridotite residues is a prominent phenomenon in the genesis of oceanic lithosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bailey, J.C., Campsie, J., Hald, N., Dittmer, F. and Rasmussen, M., 1992. Petrology and geochemistry of a dredged clinopyroxenite-dolerite basal complex from the Jan Mayen volcanic province, Norwegian — Greenland sea. Mar. Geol., 105: 63–76.

    Article  Google Scholar 

  • Batiza, R. and Niu, Y., 1992. Petrology and magma chamber processes at the East Pacific Rise 9°30′N. J. Geophys. Res., 97: 6779–6797.

    Article  Google Scholar 

  • Bédard, J.H., 1992. Oceanic crust as a reactive filter: synkinematic intrusion, hybridization, and assimilation in an ophiolitic magma chamber, western Newfoundland. Geology, 21: 77–80.

    Article  Google Scholar 

  • Bédard, J.H. and Constantin, M., 1991. Syn- and post-kinematic intrusions of gabbros and peridotite into layered gabbroic cumulates in the Bay of Islands ophiolite Newfoundland: genesis of anorthosite by reaction and troctolite by hybridization. In: Current Research, Geol. Survey Canada, 91–1: 79–88.

    Google Scholar 

  • Benn, K. and Allard, B., 1989. Preferred mineral orientations related to magmatic flow in ophiolite layered gabbros. J. Petrol., 30: 925–946.

    Article  Google Scholar 

  • Benn, K., Nicolas, A. and Reuber, I., 1988. Mantle-crust transition zone and origin of wehrhtic magmas: evidence from the Oman ophiolite. Tectonophysics, 151: 75–85.

    Article  Google Scholar 

  • Berger, E.T. and Vannier, M., 1984. Les dunites en enclaves dans les basaltes alcalins des iles oceaniques: approche pétrologique. Bull. Minéral., 107: 649–663.

    Google Scholar 

  • Bideau, D., and Hékinian, R., 1994. A dynamic model for generating small-scale heterogeneities in ocean floor basalts. Submitted to J. Geophys. Res.

    Google Scholar 

  • Bloomer, S.H., Natland, J.H. and Fisher, R.L. 1989. Mineral relationships in gabbroic rocks from fractures zones of Indian Ocean Ridges: evidence for extensive fractionation, parental diversity, and boundarylayer recrystallization. In: A.D. Saunders and M.J. Norry (Editors), Magmatism in the Ocean Basins, Geol. Soc. London Spec. Publ., 42: 107–124.

    Google Scholar 

  • Bonatti, E., Peyve, A., Kepezhinskas, P., Kurentsova, N., Seyler, M., Skolotnev, S. and Udsintev, G., 1992. Upper mantle heterogeneity below the Mid-Atlantic ridge, 0°-15°N. J. Geophys. Res., 97: 4461–4476.

    Article  Google Scholar 

  • Boudier, F., 1991. Olivine xenocrysts in picritic magmas. Contrib. Mineral. Petrol., 109: 114–123.

    Article  Google Scholar 

  • Boudier, F. and Nicolas, A., 1972. Fusion partielle gabbroique dans la lherzolite de Lanzo. Bull. Suisse Minéral. Pétrol., 52: 39–56.

    Google Scholar 

  • Boudier, F. and Nicolas, A., 1985. Harzburgite and lherzolite subtypes in ophiolitic and oceanic environments. Earth Planet. Sci. Lett., 76: 84–92.

    Article  Google Scholar 

  • Cannat, M., 1993. Emplacement of mantle rock in the seafloor at mid-ocean ridges. J. Geophys. Res., 98: 4163–4172.

    Article  Google Scholar 

  • Cannat, M., Bideau, D. and Hébert, R., 1990. Plastic deformation and magmatic impregnation in serpentinized ultramafic rocks from the Garrett transform fault (East Pacific Rise). Earth Planet. Sci. Lett., 101: 216–232.

    Article  Google Scholar 

  • Cannat, M., Bideau, D. and Bougault, H., 1992. Serpentinized peridotites and gabbros in the Mid-Atlantic Ridge axial valley at 15°37′N and 16°52′N. Earth Planet. Sci. Lett., 109: 87–106.

    Article  Google Scholar 

  • Ceuleneer, G. and Rabinowicz, M., 1992. Mantle flow and melt migration beneath oceanic ridges: models derived from observations in ophiolites. In: J. Phipps Morgan, D. Blackman and J.M. Sinton (Editors), Mantle flow and melt generation at Mid-Ocean ridges. Geophys. Monogr. 71: 123–154.

    Chapter  Google Scholar 

  • Constantin, M., 1992. Petrologie des roches gabbroiques du sondage 735B de la zone de fracture Atlantis II, dorsale sud-ouest Indienne, Océan Indien. M. Sc.Thesis, Univ. Laval, Québec: 200 pp.

    Google Scholar 

  • Constantin, M. and Hébert, R., 1992. Petrology and geochemistry of gabbroic rocks from Atlantis II fracture zone, South-west Indian ridge: implications for multiple crustal oceanic processes., EOS Trans., Amer. Geophys. Union, 73: 359.

    Google Scholar 

  • Constantin, M. and Hékinian, R., 1993. Les péridotites à plagioclase du Sud-Est Pacifique: témoins de l’intéraction des magmas basaltiques avec le manteau résiduel océanique. Abstract with program, Journées Spéc. de la Soc. Géol. de France (Géosc. Mar.), Paris: 56.

    Google Scholar 

  • Constantin, M., Hékinian, R., Ackermand, D., Stoffers, P. and Francheteau, J., 1993. Upper mantle and lower crust exposed in the Easter microplate (South East Pacific). Terra Nova, V.5, Abstract suppl. no. 1, EUG VII: 184–185.

    Google Scholar 

  • De Mets, C., Gordon, R.G., Argus, D.F. and Stein, S., 1990. Current plate motions. Geophys. J. Intern., 101: 425–478.

    Article  Google Scholar 

  • Dick, H.J.B., 1989. Abyssal peridotites, very slow spreading ridges and ocean ridge magmatism. In: A.D. Saunders and M.J. Norry (Editors), Magmatism in the Ocean Basins, Geol. Soc. London Spec. Publ., 42: 71–105.

    Google Scholar 

  • Dick, H.J.B. and Bullen, T., 1984. Chromian spinel as a petrogenetic indicator in abyssal and alpine-type peridotites and spatially associated lavas. Contrib. Mineral. Petrol., 86: 54–76.

    Article  Google Scholar 

  • Dick, H.J.B., Meyer, P.S., Bloomer, S.H., Kirby, S., Stakes, D. and Mawer, C., 1991. Lithostratigraphic evolution of an in-situ section of oceanic layer 3. In: R.P. Von Herzen, P.T. Robinson et al. (Editors), Proc. of the ODP, Sci. Res., 118: 439–538.

    Google Scholar 

  • Elthon, D., 1992. Chemical trends in abyssal peridotites: refertilization of depleted suboceanic mantle. J. Geophys. Res., 97: 9015–9025.

    Article  Google Scholar 

  • Elthon, D., Stewart, M. and Ross, D.K., 1992. Compositional trends of mineral in oceanic cumulates. J. Geophys. Res., 97: 15189–15199.

    Article  Google Scholar 

  • Engel, C.G. and Fisher, R.L., 1975. Granitic to ultramafic rock complexes of the Indian Ocean ridge system, western Indian Ocean. Geol. Soc. Am. Bull., 86: 1553–1578.

    Article  Google Scholar 

  • Evans, C., 1985. Magmatic metasomatism in peridotites from the Zambales ophiolite. Geology, 13: 166–169.

    Article  Google Scholar 

  • Fisher, R.L., Dick, H.J.B., Natland, J.H. and Meyer, P.S., 1986. Mafic/ultramafic suites of the slowly spreading Southwest Indian ridge: PROTEA exploration of the Antartica plate boundary, 54oE-47oE, 1984. Ofioliti, 11: 147–178.

    Google Scholar 

  • Fontignie, D. and Schilling, J.-G., 1991. 87Sr/86Sr and REE variations along the Easter Microplate boundaries (south Pacific): application of multivariate statistical analyses to ridge segmentation. Chem. Geol., 89: 209–241.

    Article  Google Scholar 

  • Fox, P.J. and Gallo, D.G., 1984. A tectonic model for ridge-transform-ridge plate boundaries: implications for the structure of oceanic lithosphere. Tectonophysics, 104: 205–242.

    Article  Google Scholar 

  • Francheteau, J. and Ballard, R., 1983. The East Pacific Rise near 21°N, 13°N and 20°S: inferences for alongstrike variability of axial processes of the Mid-Ocean Ridge. Earth Planet. Sci. Lett., 64: 93–116.

    Article  Google Scholar 

  • Francheteau, J. et al. (Rapanui Scientific Party), 1988. Pito and Orongo fracture zones: the northern and southern boundaries of the Easter microplate (southeast Pacific). Earth Planet. Sci. Lett., 89: 363–374.

    Article  Google Scholar 

  • Francheteau, J., Armijo, R., Cheminée, J.L., Hékinian, R., Lonsdale, P. and Blum, N., 1990. 1 Ma East Pacific Rise oceanic crust and uppermost mantle exposed by rifting in Hess Deep (equatorial Pacific Ocean). Earth Planet. Sci. Lett., 101: 281–295.

    Article  Google Scholar 

  • Girardeau, J. and Francheteau, J., 1993. Plagioclase-wehrlites and peridotites on the East Pacific Rise (Hess Deep) and the Mid-Atlantic Ridge (DSDP Site 334): evidence for magma percolation in the oceanic upper mantle. Earth Planet. Sci. Lett., 115: 137–149.

    Article  Google Scholar 

  • Hamlyn, P.R. and Bonatti, E., 1980. Petrology of mantle-derived ultramafics from the Owen fracture zone, northwest Indian ocean: implications for the nature of the oceanic upper mantle. Earth Planet. Sci. Lett., 48: 65–79.

    Article  Google Scholar 

  • Hanan, B.B. and Schilling, J.-G., 1989. Easter microplate evolution: Pb isotope evidence., J. Geophys. Res., 94: 7432–48.

    Article  Google Scholar 

  • Harte, B., Hunter, R.H. and Kinny, P.D., 1993. Melt geometry, movement and crystallization, in relation to mantle dykes, veins and metasomatism. Phil. Trans. R. Soc. Lond., A342: 1–21.

    Article  Google Scholar 

  • Hébert, R. and Constantin, M., 1991. Petrology of hydrothermal metamorphism of oceanic layer 3: implications for sulfide paragenesis and redistribution., Econ. Geol., 86: 472–485.

    Article  Google Scholar 

  • Hébert, R., Bideau, D. and Hékinian, R., 1983. Ultramafic and mafic rocks from the Garrett transform fault near 13°30′S on the East Pacific Rise: igneous petrology. Earth Planet. Sci. Lett., 65: 107–125.

    Article  Google Scholar 

  • Hébert, R., Serri, G. and Hékinian, R., 1989. Mineral chemistry of ultramafic tectonites and ultramafic to gabbroic cumulates from the major oceanic basins and Northern Apennine ophiolites (Italy) — A comparison. Chem. Geol., 77: 183–207.

    Article  Google Scholar 

  • Hébert, R., Constantin, M. and Robinson, P.T., 1991. Primary mineralogy of Leg 118 gabbroic rocks and their place in the oceanic spectrum of oceanic mafic igneous rocks. In: R.P. Von Herzen, P.T. Robinson et al. (Editors), Proc. of the ODP, Sci. Res., 118: 3–20.

    Google Scholar 

  • Hékinian, R., 1970. Gabbro and pyroxenite from a deep-sea core in the Indian Ocean. Mar. Geol., 9: 287–294.

    Article  Google Scholar 

  • Hékinian, R., Bideau, D., Cannat, M., Francheteau, J. and Hébert, R., 1992. Volcanic activity and crustmantle exposure in the ultrafast Garrett transform near 13°28′S in the Pacific. Earth Planet. Sci. Lett., 108: 259–275.

    Article  Google Scholar 

  • Hékinian, R., Bideau, D., Francheteau, J., Cheminée, J.-L., Armijo, R., Lonsdale, P. and Blum, N., 1993. Petrology of the East Pacific Rise crust and upper mantle exposed in Hess Deep (Eastern equatorial Pacific). J. Geophys. Res., 98: 8069–8094.

    Article  Google Scholar 

  • Henderson, P., 1975. Reaction trends shown by chrome-spinels of the Rhum layered intrusion. Geochim. Cosmochim. Acta, 39: 1035–1044.

    Article  Google Scholar 

  • Henstock, T.J., Woods, A.W. and White R.S., 1993. The accretion of oceanic crust by episodic sill intrusion. J. Geophys. Res., 98: 4143–4161.

    Article  Google Scholar 

  • Hey, R.N., Naar, D.F., Kleinrock, M.C., Phipps Morgan, W.J., Morales, E. and Schilling, J.-G., 1985. Microplate tectonics along a superfast seafloor spreading system near Easter Island. Nature, 317: 320–325.

    Article  Google Scholar 

  • Hirose, K. and Kushiro, I., 1993. Partial melting of dry peridotites at high pressures: determination of compositions of melts segregated from peridotite using aggregates of diamond. Earth Planet. Sci. Lett., 114: 477–489.

    Article  Google Scholar 

  • Ildefonse, B., Nicolas, A. and Boudier, F., 1993. Evidence from the Oman ophiolite for sudden stress changes during melt injection at oceanic spreading centres. Nature, 366: 673–675.

    Article  Google Scholar 

  • Johnson, K.T.M., Dick, H.J.B. and Shimizu, N., 1990. Melting in the oceanic upper mantle: an ion microprobe study of diopsides in abyssal peridotites., J. Geophys. Res., 95: 2661–2678.

    Article  Google Scholar 

  • Karson, J.A. and Dick, H.J.B., 1984. Deformed and metamorphosed oceanic crust on the Mid-Atlantic ridge. Ofioliti, 9: 279–302.

    Google Scholar 

  • Kelemen, P.B., 1990. Reaction between ultramafic rock and fractionating basaltic magma — I. Phase relations, the origin of calc-alkaline magma series, and the formation of discordant dunite. J. Petrol., 31: 51–98.

    Article  Google Scholar 

  • Kelemen, P.B., Dick, H.J.B. and Quick, J.E., 1992. Formation of harzburgite by pervasive meltrock reaction in the upper mantle. Nature, 358: 635–641.

    Article  Google Scholar 

  • Kelemen, P.B., Joyce, D.B., Webster, J.D. and Holloway, J.R., 1990. Reaction between ultramafic rock and fractionating basaltic magma — II. Experimental investigation of reaction between olivine tholeiite and harzburgite at 1150–1050°C and 5kb. J. Petrol., 31: 99–134.

    Article  Google Scholar 

  • Klein, E.M. and Langmuir, C.H., 1987. Global correlations of ocean ridge basalt chemistry with axial depth and crustal thickness. J. Geophys. Res., 92: 8089–8115.

    Article  Google Scholar 

  • Kornprobst, J., Ohnenstetter, D. and Ohnenstetter, M., 1981. Na and Cr contents in clinopyroxenes from peridotites: a possible discriminant between sub-continental and sub-oceanic mantle. Earth Planet. Sci. Lett., 53: 241–254.

    Article  Google Scholar 

  • Langmuir, C.H. and Bender, J.F., 1984. The geochemistry of oceanic basalts in the vicinity of transform faults: observations and implications. Earth Planet. Sci. Lett., 69: 107–127.

    Article  Google Scholar 

  • Lykins, R.W. and Jenkins, D.M., 1992. Experimental determination of pargasite stability relations in the presence of orthopyroxene. Contrib. Mineral. Petrol., 112: 405–413.

    Article  Google Scholar 

  • Martinez, F., Naar, D.F., Reed, T.B. and Hey, R.N., 1991. Three-dimensional SeaMARC II, gravity, and magnetics study of large-offset rift propagation at the Pito rift, Easter microplate. Mar. Geophys. Res., 13: 255–285.

    Article  Google Scholar 

  • Mével, C., 1987. Evolution of oceanic gabbros from DSDP Leg 82: influence of the fluid phase on metamorphic crystallizations. Earth Planet. Sci. Lett., 83: 67–79.

    Article  Google Scholar 

  • Mével, C., Cannat, M., Gente, P., Marion, E., Auzende, J.M. and Karson, J.A., 1991. Emplacement of deep crustal and mantle rocks on the west median valley wall of the MARK area (MAR, 23°N). Tectonophysics, 190: 31–53.

    Article  Google Scholar 

  • Michael, P.J. and Bonatti, E., 1985. Peridotite composition from the North Atlantic: regional and tectonic variations and implications for partial melting. Earth Planet. Sci. Lett., 73: 91–104.

    Article  Google Scholar 

  • Naar, D.F. and Hey, R.N., 1989. Recent Pacific-Easter-Nazca plate motions. In: Sinton, J.M. (Ed.), Evolution of Mid Ocean Ridges. Geophys. Monogr. 57, IUGG-AGU, 8: 9–30.

    Chapter  Google Scholar 

  • Naar, D.F. and Hey, R.N., 1991. Tectonic evolution of the Easter microplate. J. Geophys. Res., 96: 7961–7993.

    Article  Google Scholar 

  • Naar, D.F., Martinez, F., Hey, R.N., Reed, T.B. and Stein, S., 1991. Pito rift: how a large-offset rift propagates. Mar. Geophys. Res., 13: 287–309.

    Article  Google Scholar 

  • Natland, J.H., 1980. Effect of axial magma chambers beneath spreading centers on the compositions of basaltic rocks. In: B.R. Rosendahl, R. Hékinian et al. (Editors), Init. Rep. of DSDP, 54, Washington: 833–850.

    Google Scholar 

  • Nicholls, I.A., Ferguson, J., Jones, H., Marks, G.P. and Mutter, J.C., 1981. Ultramafic blocks from the ocean floor southwest of Australia. Earth Planet. Sci. Lett., 56: 362–374.

    Article  Google Scholar 

  • Nicolas, A., 1986. A melt extraction model based on structural studies in mantle peridotites. J. Petrol., 27: 999–1022.

    Article  Google Scholar 

  • Nicolas, A., 1989. Structures of ophiolites and dynamics of oceanic lithosphere. Dordrecht, Kluwer: 367 pp.

    Book  Google Scholar 

  • Nicolas, A., 1992. Kinematics in magmatics rocks with special reference to gabbros. J. Petrol., 33: 891–915.

    Article  Google Scholar 

  • Nicolas, A. and Jackson, M., 1982. High temperature dikes in peridotites: origin by hydraulic fracturing. J. Petrol., 23: 568–582.

    Article  Google Scholar 

  • Nicolas, A. and Prinzhofer, A., 1983. Cumulative or residual origin for the transition zone in ophiolites: structural evidence. J. Petrol., 24: 188–206.

    Article  Google Scholar 

  • Phipps Morgan, J. and Chen, Y.J., 1993. The genesis of oceanic crust: magma injection, hydrothermal circulation, and crustal flow. J. Geophys. Res., 98: 6283–6297.

    Article  Google Scholar 

  • Poreda, R.J., Schilling, J.G., and Craig, H., 1993. Helium isotope ratios in Easter microplate basalts. Earth Planet. Sci. Lett., 119: 319–329.

    Article  Google Scholar 

  • Quick, J.E., 1981. The origin and significance of large, tabular dunite bodies in the Trinity peridotite, Northern California. Contrib. Mineral. Petrol., 78: 413–422.

    Article  Google Scholar 

  • Quick, J.E. and Delinger, R.P., 1993. Ductile deformation and the origin of layered gabbro in ophiolites. J. Geophys. Res., 98: 14015–14027.

    Article  Google Scholar 

  • Rampone, E., Piccardo, G.B., Vannucci, R., Bottazzi, P. and Ottolini, L., 1993. Subsolidus reactions monitered by trace element partitioning: the spinel- to plagioclase-facies transition in mantle peridotites. Contrib. Mineral. Petrol., 115: 1–17.

    Article  Google Scholar 

  • Reuber, I., Whitechurch, H. and Juteau, T., 1985. Successive generations of coarse grained dikelets in the ophiolite complex of Antalya, Turkey: products of partial fusion and residual liquids. Ofioliti, 10: 35–62.

    Google Scholar 

  • Ridley, W.I., 1977. The crystallization trends of spinels in tertiary basalts from Rhum and Muck and their petrogenetic significance. Contrib. Mineral. Petrol., 64: 243–255.

    Article  Google Scholar 

  • Roeder, P.L. and Reynolds, I., 1991. Crystallization of chromite and chromium solubility in basaltic melts. J. Petrol., 32: 909–934.

    Article  Google Scholar 

  • Rusby, R.I., 1992. GLORIA and other geophysical studies of the tectonic pattern and history of the Easter Microplate, southeast Pacific. In: L.M. Parson, B.J. Murton and P. Browning (Editors), Ophiolites and their Modern Oceanic Analogus, Geol. Soc. London Spec. Publ., 60: 81–106.

    Google Scholar 

  • Schilling, J.-G., Sigurdsson, H., Davis, A.N. and Hey, R.N., 1985. Easter microplate evolution. Nature, 317: 325–331.

    Article  Google Scholar 

  • Searle, R.C., Rusby, R.I., Engeln, J., Hey, R.N., Zukin, J., Hunter, P.M., Le Bas, T.P., Hoffman, H.-J. and Livermore, R., 1989. Comprehensive sonar imaging of the Easter microplate. Nature, 341: 701–705.

    Article  Google Scholar 

  • Searle, R.C., Bird, R.C., Rusby, R.I. and Naar, D.F., 1993. The development of two oceanic microplates: Easter and Juan Fernandez microplates, East Pacific Rise. J. Geol. Soc. London, 150: 965–976.

    Article  Google Scholar 

  • Shibata, T. and Thompson, G., 1986. Peridotites from the Mid-Atlantic ridge at 43°N and their petrogenetic relation to abyssal tholeiites. Contrib. Mineral. Petrol., 93: 144–159.

    Article  Google Scholar 

  • Sinton, J.M. and Detrick, R.S., 1992. Mid-ocean ridge magma chambers. J. Geophys. Res., 97: 197–216.

    Article  Google Scholar 

  • Sleep, N.H., 1988. Tapping of melt by veins and dikes. J. Geophys. Res., 93: 10255–10272.

    Article  Google Scholar 

  • Solomon, S.C. and Toomey, D.R., 1992. The structure of mid-ocean ridges. Ann. Rev. Earth Planet. Sci., 20: 329–364.

    Article  Google Scholar 

  • Stoffers, P., Hékinian, R. et al., 1989. Cruise Report SONNE 65 — Midplate II, Hotspot volcanism in the central Southpacific. Berichte — Reports, no.40, Univ. Kiel: 126 pp.

    Google Scholar 

  • Stoffers, P., Hékinian, R. et al., 1992. Cruise Report SONNE 80a — Midplate III, Oceanic volcanism in the Southpacific. Berichte — Reports, no.58, Univ. Kiel: 128 pp.

    Google Scholar 

  • Takahashi, E., Shimazaki, T., Tsuzaki, Y. and Yoshida, H., 1993. Melting study of a peridotite KLB-1 to 6.5GPa, and the origin of basaltic magmas. Phil. Trans. R. Soc. Lond., A342: 105–120.

    Article  Google Scholar 

  • White, R.S., McKenzie, D. and O′Nions, R.K., 1992. Oceanic crustal thickness from seismic measurements and rare earth element inversions. J. Geophys. Res., 97: 19683–19715.

    Article  Google Scholar 

  • Wilshire, H.G. and Kirby, S.H. 1989. Dikes, joints, and faults in the upper mantle. Tectonophysics, 161: 23–31.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Constantin, M., Hékinian, R., Ackermand, D., Stoffers, P. (1995). Mafic and Ultramafic Intrusions into Upper Mantle Peridotites from Fast Spreading Centers of the Easter Microplate (South East Pacific). In: Vissers, R.L.M., Nicolas, A. (eds) Mantle and Lower Crust Exposed in Oceanic Ridges and in Ophiolites. Petrology and Structural Geology, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8585-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8585-9_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4557-7

  • Online ISBN: 978-94-015-8585-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics