Skip to main content

Part of the book series: Understanding Chemical Reactivity ((UCRE,volume 16))

Abstract

Reaction paths are a widely used concept in theoretical chemistry. It is evident that the invariance problem, which was mathematically solved a long time ago (cf. the report given in Ref. [1]), penetrates again and again the discussions in this field (see Ref. [2]). We give both the non-invariant and the invariant definitions with respect to the choice of the particular coordinate system for two important kinds of chemical reaction pathways (RP), namely, steepest descent lines (SDP) and gradient extremal (GE) curves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Quapp and D. Heidrich, Theor. Chim. Acta 66, 245 (1984).

    Article  CAS  Google Scholar 

  2. See special issue of J. Chem. Soc. Faraday Trans. 90, No.12 (1994).

    Google Scholar 

  3. H. Bock and R. Dammel, Angew. Chem. (Int. Ed.) 26, 504 (1987).

    Article  Google Scholar 

  4. G. Herzberg, Molecular Spectra and Molecular Structure, Vo1.II, Krieger Publ., Malabar, 1991

    Google Scholar 

  5. E. B. Wilson, J. C. Decius , and P. C. Cross, Molecular Vibrations, McGraw-Hill Comp., New York, 1955.

    Google Scholar 

  6. G. Eisenreich, Lineare Algebra und Analytische Geometrie, Akademie-Verl., Berlin, 1989.

    Google Scholar 

  7. A. Tachibana and K. Fukui, Theor. Chin. Acta 49, 321 (1978).

    Article  CAS  Google Scholar 

  8. D. Gromoll, W. Klingenberg, and W. Meyer, Riemannsche Geometrie im Großen, Lecture Notes in Mathematics 55, pp.89, 1968.

    Google Scholar 

  9. A. Banerjee and N. P. Adams, Int. J. Quantum Chem. 43, 855 (1992).

    Article  Google Scholar 

  10. P. G. Mezey, Potential Energy Hypersurfaces, Elsevier, Amsterdam, 1987.

    Google Scholar 

  11. D. Heidrich, W. Kliesch, and W. Quapp, Properties of Chemically Interesting Potential Energy Surfaces, Lecture Notes in Chemistry 56, Springer, Berlin, 1991.

    Book  Google Scholar 

  12. K. Fukui, J. Phys. Chem. 74, 4161 (1970).

    Article  CAS  Google Scholar 

  13. W. Quapp, 0. Imig, and D. Heidrich, this book.

    Google Scholar 

  14. M. V. Basilevski, Chem. Phys. 24, 81 (1977).

    Article  Google Scholar 

  15. S. Panciř, Coll,. Czech. Chem. Comm. 40, 1112 (1975).

    Article  Google Scholar 

  16. M. V. Basilevski and A. G. Shamov, Chem. Phys. 60, 347 (1981).

    Article  Google Scholar 

  17. M. V. Basilevski, Chem. Phys. 67, 337 (1982).

    Article  Google Scholar 

  18. D. K. Hoffman, R. S. Nord, and K. Ruedenberg, Theor. Chim. Acta. 69, 265 (1986).

    Article  CAS  Google Scholar 

  19. W. Quapp, Theor. Chim. Acta 75, 447 (1989).

    Article  CAS  Google Scholar 

  20. J.-Q. Sun and K. Ruedenberg, J. Chem. Phys. 98, 9707 (1993).

    Article  CAS  Google Scholar 

  21. D. J. Rowe and A. Ryman, J. Math. Phys., 23, 732 (1982).

    Article  Google Scholar 

  22. L. L. Stacho and M. I. Ban, Theor. Chim. Acta 84, 535 (1993).

    Article  CAS  Google Scholar 

  23. B. A. Ruf and W. H. Miller, J. Chem. Soc., Faraday II84, 1523 (1988).

    Article  CAS  Google Scholar 

  24. A. Tachibana, H. Fueno, I. Okazaki, and T. Yamabe, Int. J. Quantum Chem. 42, 929 (1992).

    Article  CAS  Google Scholar 

  25. T. Taketsuga and T. Hirano, J. Chem. Phys 99, 9806 (1993).

    Article  Google Scholar 

  26. H. B. Schlegel,J. Chem. Soc., Faraday Trans. 90, 1569 (1994).

    Article  CAS  Google Scholar 

  27. W. Quapp, J. Chem. Soc., Faraday Trans. 90, 1607 (1994).

    Google Scholar 

  28. O. Imig, D. Heidrich, and W. Quapp, in preparation. (1995).

    Google Scholar 

  29. H. B. Schlegel, Theor. Chim. Acta 83, 21 (1992).

    Article  Google Scholar 

  30. D. Truhlar, J. Chem. Soc., Faraday Trans. 90, 1608 (1994).

    Google Scholar 

  31. E. Zeidler, Nonlinear Functional Analysis and its Application IV, Application to Mathematical Physics, Springer, New York, 1988.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Quapp, W. (1995). The Invariance of the Reaction Path Description in Any Coordinate System. In: Heidrich, D. (eds) The Reaction Path in Chemistry: Current Approaches and Perspectives. Understanding Chemical Reactivity, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8539-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8539-2_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4586-7

  • Online ISBN: 978-94-015-8539-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics