Skip to main content

Part of the book series: Understanding Chemical Reactivity ((UCRE,volume 16))

Abstract

Our thinking about chemical reactions has benefitted greatly from the model of energy profiles as functions of so-called “reaction coordinates” (RC) . In textbooks, such profiles are often used to illustrate the main features of a chemical reaction, including its mechanism, in terms of transition state theory (TST) [1]. In his book “Potential Energy Hypersurfaces” (p. 86), P.G.Mezey [2] rightly describes the term “reaction coordinate” (RC) as a misleading one to characterize the reaction path (RP) . Confusion results from the term “coordinate” which suggests that only one dominant internal coordinate describes the reaction path. The use of one selected “distinguished” coordinate (or “leading” coordinate) in higher-dimensional systems (by minimizing the other independent internal coordinates at fixed values of the distinguished coordinate) generally does not produce cross-sections through a PES (potential energy hypersurface) that uniquely correspond to minimum energy paths (MEP), see below. The chemist must — nolens volens — understand what a curve in the high-dimensional coordinate space taken as RP actually means (cf. RC in Figure 1) ! The comparison of the RP to a normal mode resulting from Wilson’s FG matrix [3] method may be helpful.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Phys. Chem. 87, number 15, special issue dedicated to H.Eyring.

    Google Scholar 

  2. P. G. Mezev. Potential Energy Hypersurfaces, Elsevier, Amsterdam, 1987.

    Google Scholar 

  3. E. B. Wilson, J. C. Decius, annd P.C. Cross, Molecular Vibrations, McGraw-Hill, New York, 1955.

    Google Scholar 

  4. For books and reviews published more recently see for instance: a) D. Heidrich, W. Kliesch, W. Quapp, Properties of Chemically Interesting Potential Energy Hypersurfaces (Lecture Notes in Chemistry, Vol.56), Springer, Berlin, 1991.

    Book  Google Scholar 

  5. Z. Havlas and R. Zahradnik, Int. J. Quantum Chem. 26, 607 (1984).

    Article  CAS  Google Scholar 

  6. E. Kraka and T. H. Dunning Jr. , in Advances in Molecular Structure Theory, Vol.1 (pages 129–173), JAI Press Inc ., 1990.

    Google Scholar 

  7. M. L. McKee and M. Page, Computing Reaction Pathways on Molecular Potential Energy Surfaces, in K. B. Lipkowitz, D. B. Boyd (eds.) Reviews in Computational Chemistry, VCH, New York, 1993.

    Google Scholar 

  8. S. Glasstone, K. J. Laidler, and H. Eyring, The Theory of Rate Processes (International Chemical Series, L. P. Hammett, ed.), McGraw-Hill, New York, London, 1941.

    Google Scholar 

  9. K. Laidler. Theory of Reaction Rates, McGraw-Hill, New York, 1969.

    Google Scholar 

  10. For a short survey, cf. for instance: D. G. Truhlar and M. S. Gordon, Science 249, 491 (1990).

    Article  CAS  Google Scholar 

  11. W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab initio Molecular Orbital Theory. Wiley, New York 1986.

    Google Scholar 

  12. D. Heidrich and W. Quapp, Theor. Chim. Acta (Berl.) 70, 89 (1986).

    Article  CAS  Google Scholar 

  13. W. Quapp and D. Heidrich, Theor. Chim. Acta 66, 245 (1984).

    Article  CAS  Google Scholar 

  14. R. M. Minyaev, Int. J. Quantum Chem. 49,105 (1994).

    Article  CAS  Google Scholar 

  15. Cf. for instance a) M. J. Rothman, L. L. Lohr Jr., C. S. Ewig, and J. R. Van Wazer,in D. G. Truhlar (ed) Potential Energy Surfaces and Dynamics Calculations, Plenum, New York, 1981.

    Google Scholar 

  16. K. Müller, Angew.Chemie (Int. Ed.) 19,1 (1980).

    Article  Google Scholar 

  17. M. J. Rothman and L. L. Lohr Jr. , Chem. Phys. Letters 70, 405 (1980).

    Article  CAS  Google Scholar 

  18. R. Steckler and D. G. Truhlar, J. Chem. Phys . 93, 6570 (1990).

    Article  CAS  Google Scholar 

  19. K. Fukui, in R. Daudel and B. Pullman (eds.) The World of Quantum Chemistry, Reidel, Dordrecht, 1974, p.113.

    Chapter  Google Scholar 

  20. I. Shavitt, The Tunnel Effect Corrections to the Rate of Reactions with Parabolic and Eckhart Barrier, Report WIS-AEC-23, Theoret. Chem. Lab. , University of Wisconsin, Madison, W. I., 1959.

    Google Scholar 

  21. R. E. Weston Jr. , J. Chem. Phys. 31, 892 (1959).

    Article  CAS  Google Scholar 

  22. I. Shavitt, ibid. 49, 4048 (1968).

    CAS  Google Scholar 

  23. R. A. Marcus, J. Chem. Phys. 45, 4493 (1966),

    Article  CAS  Google Scholar 

  24. R. A. Marcus, ibid. 49, 2610, 2617 (1968).

    CAS  Google Scholar 

  25. D. G. Truhlar and A. J. Kuppermann, J. Am. Chem. Soc . 93, 1840 (1971).

    Article  Google Scholar 

  26. H. F. Schaefer III, Chem. Brit. 11, 227 (1975).

    Google Scholar 

  27. K. Fukui, J. Phys. Chem. 74, 4161 (1970).

    Article  CAS  Google Scholar 

  28. A. Tachibana and K. Fukui, Theor. Chim. Acta 49, 321 (1978);

    Article  CAS  Google Scholar 

  29. ibid. 57, 81 (1980);

    Article  CAS  Google Scholar 

  30. A. Tachibana and K. Yamashita, Int. J. Quantum Chem. Symp . 15, 621 (1981);

    Google Scholar 

  31. K. Fukui, Int.J.Quant.Chem.Symp. 15, 633 (1981).

    CAS  Google Scholar 

  32. GAUSSIAN 92, Revision C, M. J. Frisch, G. W. Trucks, M.Head-Gordon, P.M.W.Gill, M.W.Wong, J.B.Foresman, B.G.Johnson, H.B.Schlegel, M.A.Robb, E. S. Replogle, R.Gomberts, J. L. Andres, K.Raghavachari, J. S. Binkley, C.Gonzales, R. L. Martin, D. J. Fox, D. J. Defrees, J.Baker, J. J. P. Stewart, and J. A. Pople, Gaussian, Inc. , Pittsburgh, PA, 1992.

    Google Scholar 

  33. C. Gonzales and H. B. Schlegel, J. Phys . Chem. 90, 215 (1989).

    Google Scholar 

  34. J. Panciř, Collect. Czech. Chem. Commun. 40, 1112 (1975).

    Article  Google Scholar 

  35. D. K. Hofman, R. S. Nord, and K. Ruedenberg, Theor. Chim. Acta 69,265 (1986);

    Article  Google Scholar 

  36. P. Jørgensen, H.J.A. Jensen, and T. Helgaker, Theor.Chim.Acta 73, 55 (1988);

    Article  Google Scholar 

  37. N. Shida, J. E. Almlöf, and P. F. Barbara, Theor. Chim. Acta 76, 7 (1989);

    Article  Google Scholar 

  38. W. Quapp, Theor. Chim. Acta 75. 447 (1989).

    Article  CAS  Google Scholar 

  39. C.J. Cerjan and W.H. Miller, J.Chem.Phys. 75, 2800 (1981);

    Article  CAS  Google Scholar 

  40. J. Simmons, P. Jørgensen, H. Taylor, and J. Ozment, J.Phys.Chem. 87, 2745 (1983).

    Article  Google Scholar 

  41. D. O’Neal, H. Taylor, and J. Simmons J.Phys.Chem. 88, 1510 (1984);

    Article  Google Scholar 

  42. A. Banerjee, N. Adams, J. Simmons, R. Shepard, J. Phys. Chem. 89, 52 (1985).

    Article  CAS  Google Scholar 

  43. Cf. for instance D.J. Wales, J.Am.Chem.Soc. 115, 11180 (1993).

    Article  CAS  Google Scholar 

  44. K. Müller and L. D. Brown, Theor. Chim. Acta 53, 75 (1979).

    Article  Google Scholar 

  45. A. Tachibana and K. Fukui, Theor. Chim. Acta 51, 189 (1979);

    Article  CAS  Google Scholar 

  46. A. R. Ruf and W.H. Miller, J.Chem.Soc. (Farad.Trans.2) 84, 1523 (1988);

    Article  CAS  Google Scholar 

  47. P. Pechukas, J.Chem. Phys. 64, 1516 (1976).

    Article  CAS  Google Scholar 

  48. D.G. Truhlar, W.L. Hase, and J.T. Hynes, J.Phys.Chem. 87, 2664 (1983);

    Article  CAS  Google Scholar 

  49. ibid., p. 5223 (E) ;

    Google Scholar 

  50. M. M. Kreevoy , and D. G. Truhlar, in C. Bernasconi (ed.): Investigation of Rates and Mechanisms of Reactions, Part 1, Wiley, New York, 1986.

    Google Scholar 

  51. B. Hartke and J. Manz, J. Am. Chem. Soc. 110, 3063 (1988).

    Article  CAS  Google Scholar 

  52. D.G. Truhlar, Annu.Rev.Phys.Chem. 35 159 (1984).

    Article  CAS  Google Scholar 

  53. W.H. Miller, N.C. Handy, and J.E. Adams, J.Chem.Phys. 72, 99 (1980); for a survey see: Ref. 171.

    Article  CAS  Google Scholar 

  54. For literature cf. [4c].

    Google Scholar 

  55. For references cf. [4a], p.14.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Heidrich, D. (1995). An Introduction to the Nomenclature and Usage of the Reaction Path Concept. In: Heidrich, D. (eds) The Reaction Path in Chemistry: Current Approaches and Perspectives. Understanding Chemical Reactivity, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8539-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8539-2_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4586-7

  • Online ISBN: 978-94-015-8539-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics