Skip to main content

Ecotoxicological Effects

  • Chapter
Book cover Risk Assessment of Chemicals

Abstract

Ecotoxicology is the study of the three S’s. It is the study of the toxic effects of substances on nonhuman species in complex systems (Figure 6.1). Ecotoxicological effects are changes in the state or dynamics of an organism, or at other levels of biological organization, resulting from exposure to a chemical. These levels may include the subcellular level, the cellular level, tissues, individuals, populations, communities and ecosystems, and finally, landscapes. The number and variety of interactions, increase dramatically in this order, i.e. with the complexity of the systems. Due to the complexity of these systems, models are needed to describe the interactions between substances and species (toxicology), between substances and systems (chemistry) and between species in systems (ecology), as well as to account for the overall integration of these interactions. These models may require input from mathematics, statistics and informatics. In order to define ecotoxicology, three questions need to be asked:

  1. 1.

    Are the disciplines working on the same questions and subjects?

  2. 2.

    What knowledge and techniques are needed?

  3. 3.

    Do interactions occur?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Van Leeuwen, C.J. 1993. About and beyond ecotoxicological limits. [120 11:282–292 [in Dutch with a summary in English].

    Google Scholar 

  2. Organization for Economic Co-operation and Development. 1989. Report of the OECD workshop on ecological effects assessment. OECD Environment Monographs 26, Paris, France.

    Google Scholar 

  3. Suter, G.W. 1993. Ecological Risk Assessment. Lewis Publ., Chelsea, MI.

    Google Scholar 

  4. Calow, P., ed. 1993. Handbook of Ecotoxicology. Blackwell Sci. Publ., London, UK.

    Google Scholar 

  5. Ehrlich, P.R. and E.O. Wilson. 1991. Biodiversity studies: Science and policy. Science 253: 758–762.

    Article  CAS  Google Scholar 

  6. Central Bureau for Statistics. 1989. Number of plant and animal species. Kwartaalbericht Milieu 4:15–21, The Hague, The Netherlands [in Dutch].

    Google Scholar 

  7. Health Council of the Netherlands. 1989. Assessing the risk of toxic chemicals for ecosystems. Report No. 1988/28E, The Hague, The Netherlands.

    Google Scholar 

  8. Stephan, C.E. 1986. Proposed goal of applied aquatic toxicology. In T.M. Poston and R. Purdy, eds., Aquatic Toxicology and Environmental Fate (Ninth Volume). STP 921. American Society for Testing and Materials, Philadelphia, PA, pp. 3–10.

    Google Scholar 

  9. National Environmental Policy Plan. 1989. To choose or to lose 1990–1994. Second Chamber of the States General, session 1988–1989, 21137, Nos. 1–2. The Hague, The Netherlands.

    Google Scholar 

  10. Stephan, C.E., D.I. Mount, D.J. Hansen, J.H. Gentile, G.A. Chapman and W.A. Brungs. 1985. Guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses. Report PB85–227049, U.S. Environmental Protection Agency, Springfield, VA.

    Google Scholar 

  11. Fresco, L.O. and S.B. Kroonenberg. 1992. Time and spatial scales in ecological sustainability. Land Use Policy, July: 155–168.

    Google Scholar 

  12. Van Der Kooy, L.A., D. Van De Meent, C.J. Van Leeuwen and W.A. Bruggeman. 1991. Deriving quality criteria for water and sediment from the results of aquatic toxicity tests and product standards: Application of the equilibrium partitioning theory. Water Res. 25: 697–705.

    Article  Google Scholar 

  13. Van Leeuwen, C.J., P.T.J. Van Der Zandt, T. Aldenberg, H.J.M. Verhaar and J.L.M. Hermens. 1992. Application of QSARs, extrapolation and equilibrium partitioning in aquatic effects assessment. I. Narcotic industrial pollutants. Environ. Toxicol. Chem. 11: 267–282.

    Google Scholar 

  14. Larsson, P. S. Hamrin and L. Okla. 1991. Factors determining the uptake of persistent pollutants in an eel population (Anguilla anguilla L). Environ. Pollut. 69: 39–50.

    CAS  Google Scholar 

  15. Stigliani, W.M. 1989. Changes in valued “capacities” of soils and sediments as indicators of nonlinear and time-delayed environmental effects. Environ. Monit. Assessm. 10: 245–307.

    Article  Google Scholar 

  16. Organization for Economic Co-operation and Development. 1993. Report of the OECD workshop on application of simple models for exposure assessment. OECD Environment Monographs 69, Paris, France.

    Google Scholar 

  17. Sprague, J.B. 1973. The ABCs of pollutant bioassay using fish. In J. Cairns, Jr. and K.L. Dickson, eds., Biological Methods for the Assessment of Water Quality. STP 528, American Society for Testing and Materials, Philadelphia, PA, pp. 6–30.

    Google Scholar 

  18. Mount, D.I. and W.A. Brungs. 1967. A simplified dosing apparatus for fish toxicology studies. Water Res. 1: 21–29.

    Article  CAS  Google Scholar 

  19. Rand, G.M. and S.R. Petrocelli, eds., 1985. Fundamentals of Aquatic Toxicology. Hemisphere, Cambridge, UK.

    Google Scholar 

  20. Stephan, C.E. 1977. Methods for calculating an LC50. In F.L. Mayer and J.L. Hamelink, eds., Aquatic Toxicology and Hazard Evaluation (First Symposium). STP 634. American Society for Testing and Materials, Philadelphia, PA, pp. 65–84.

    Google Scholar 

  21. Hoekstra, J. 1991. Estimation of the LC50, a review. Environmetrics 2: 139–152.

    Article  Google Scholar 

  22. Organization for Economic Co-operation and Development. 1984. Guidelines for the testing of chemicals. OECD, Paris, France.

    Google Scholar 

  23. Kooijman, S.A.L.M., A.O. Hanstveit and H. Oldersma. 1983. Parametric analyses of population growth in bioassays. Water Res. 17: 527–538.

    Article  CAS  Google Scholar 

  24. Skalski, J.R. 1981. Statistical inconsistencies in the use of no observed effect levels in toxicity testing. In D.R. Branson and K.L. Dickson, eds., Aquatic Toxicology and Hazard Assessment (Fourth Conference). STP 737. American Society for Testing and Materials, Philadelphia, PA, pp. 377–387.

    Google Scholar 

  25. Gulley, D.D., A.M. Boelter and H.L. Bergman. 1989. TOXSTAT Release 3. 2, University of Wyoming, Laramie, WY.

    Google Scholar 

  26. Stephan, C.E. and J.W. Rogers. 1985. Advantages of using regression analyses to calculate results of chronic toxicity tests. In R.C. Bahner and D.J. Hansen, eds., Aquatic Toxicology and Hazard Assessment. STP 891. American Society for Testing and Materials, Philadelphia, PA, pp. 328–338.

    Google Scholar 

  27. McKim, J.M. 1985. Evaluation of tests with early life stages of fish for predicting long-term toxicity. J. Fish. Res. Can. 34: 1148–1154.

    Article  Google Scholar 

  28. Van Leeuwen, C.J., G. Niebeek and M. Rijkeboer. 1987. Effects of chemical stress on the population dynamics of Daphnia magna: A comparison of two test procedures. Ecotoxicol. Environ. Saf. 14: 1–11.

    Article  Google Scholar 

  29. Mount, D.I. and T.J. Norberg. 1984. A seven-day life cycle cladoceran toxicity test. Environ. Toxicol. Chem. 3: 425–434.

    Article  CAS  Google Scholar 

  30. American Society for Testing and Materials. 1989. Standard guide for conducting three-brood renewal toxicity tests with Ceriodaphnia dubia. In Annual Book of ASTM Standards, Vol 11.01, E 1295. American Society for Testing and Materials, Philadelphia, PA, pp. 879–897.

    Google Scholar 

  31. Van Leeuwen, C.J., P.S. Griffioen, W.H.A. Vergouw and H. Maas-Diepeveen. 1985. Differences in susceptibility of early life stages of rainbow trout (Salmo gairdneri) to environmental pollutants. Aquat. Toxicol. 7: 59–78.

    Article  Google Scholar 

  32. Environment Canada. 1992. Biological test method: Toxicity tests using early life stages of salmonid fish (rainbow trout, coho salmon, or atlantic salmon). Environmental Protection Series, Report EPS 1/RM/28, Ottawa, Ontario, Canada.

    Google Scholar 

  33. Norberg-King, T.J. 1990. An evaluation of the fathead minnow seven-day subchronic test for estimating chronic toxicity. Environ. Toxicol. Chem. 8: 1075–1089.

    Article  Google Scholar 

  34. Allen, J.D. and R.E. Daniels. 1982. Life table evaluation of chronic exposure of Eurytemora affines (Copepoda) to kepone. Mar. Biol. (Berlin) 66: 179–184.

    Article  Google Scholar 

  35. Van Leeuwen, C.J., M. Rijkeboer and G. Niebeek. 1986. Population dynamics of Daphnia magna as modified by chronic bromide stress. Hydrobiologia 133: 277–285.

    Article  Google Scholar 

  36. Van Straalen, N.M., J.H.M. Schobben and R.G.M. De Goede. 1989. Population consequences of cadmium toxicity in soil microarthropods. Ecotoxicol. Environ. Saf. 17: 190–204.

    Article  Google Scholar 

  37. Roughgarden, J. 1971. Density-dependent natural selection. Ecology 52: 453–468.

    Article  Google Scholar 

  38. National Research Council. 1981. Testing for effects of chemicals on ecosystems. National Academy Press, Washington, DC.

    Google Scholar 

  39. Organization for Economic Co-operation and Development. 1992. Report of the OECD workshop on the extrapolation of laboratory aquatic toxicity data to the real environment. OECD Environment Monographs 59, Paris, France.

    Google Scholar 

  40. Hedtke, S.F. 1984. Structure and function of copper-stressed aquatic microcosms. Aquat. Toxicol. 5: 227–244.

    Article  CAS  Google Scholar 

  41. Emans, H.J.B., P.C. Okkerman, E.J. Van De Plassche, P.M. Sparenburg and J.H. Canton. 1993. Validation of some extrapolation methods used for effect assessment. Environ. Toxicol. Chem. 12: 2139–2154.

    Article  CAS  Google Scholar 

  42. Cairns, J., Jr. 1986. The myth of the most sensitive species. Bioscience 36: 670–672.

    Article  Google Scholar 

  43. La Point, T.W. and J.A. Perry. 1989. Use of experimental ecosystems in regulatory decisionmaking Environ. Management 13:539–544.

    Article  Google Scholar 

  44. Crossland, N.O. 1990. The role of mesocosm studies in pesticide registration. Brighton Crop Protection Conference. Pests and Diseases 6B - 1: 499–508.

    Google Scholar 

  45. Crossland, N.O. and C.J.M. Wolff. 1988. Outdoor ponds: Their construction, management, and use in experimental ecotoxicology. In O. Hutzinger, ed., The Handbook of Environmental Chemistry, Vol. 2/D, Springer-Verlag, Berlin, Germany, pp. 51–69.

    Google Scholar 

  46. Van Leeuwen, C.J., E.J. Van De Plassche and J.H. Canton. 1994. The role of field tests in hazard assessment. In I.R. Hill, F. Heimbach, P. Leeuwangh and P. Matthiessen, eds., Freshwater Field Tests for Hazard Assessment of Chemicals. Lewis Publ., Chelsea, MI, pp. 339–453.

    Google Scholar 

  47. Kooijman, S.A.L.M. 1985. Toxicity at population level. In J. Cairns Jr. ed., Multispecies Toxicity Testing. Perga-mon Press, New York, NY, pp. 143–164.

    Google Scholar 

  48. Taub, F.B. 1989. Standardized aquatic microcosm: Development and testing. In A. Boudou and F. Ribeyre, eds., Aquatic Ecotoxicology. CRC Press Inc. Boca Raton, FL, pp. 47–94.

    Google Scholar 

  49. Society of Environmental Toxicology and Chemistry. 1992. Guidance document on testing procedures for pesticides in freshwater mesocosms. From a meeting of experts on guidelines for static field mesocosm tests, held at Monks Wood Experimental Station, 3–4 July 1991. Abbotts Ripton, Huntingdon, UK.

    Google Scholar 

  50. Organization for Economic Co-operation and Development. 1992. Report of the OECD workshop on effects assessment of chemicals in sediment. Environment Monographs 60, Paris, France.

    Google Scholar 

  51. Giesy, J.P. and R.A. Hoke. 1989. Freshwater sediment toxicity bioassessment: Rationale for species selection and test design. J. Great Lakes Res. 15: 539–569.

    Article  CAS  Google Scholar 

  52. Beurskens, J.E.M., G.A.J. Mol. H.L. Barreveld, B. Van Munster and H.J. Winkels. 1993. Geochronology of priority pollutants in a sedimentation area of the river Rhine. Environ. Toxicol. Chem. 12: 1549–1566.

    Article  CAS  Google Scholar 

  53. Malins, D.C., B.B. McCain, D.W. Brown, U. Varanasi, M.M. Krahn, M.S. Myers and S. Chan. 1987. Sediment-associated contaminants and liver diseases in bottom-dwelling fish. Hydrobiologia 149: 67–74.

    Article  CAS  Google Scholar 

  54. Van Urk, G. and F.C.M. Kerkum. 1987. Chironomid mortality after the Sandoz accident and deformities in chironomid larvae due to sediment pollution in the Rhine. Aqua 4: 191–196.

    Google Scholar 

  55. Milbrink, G. 1980. Oligochaete communities in pollution biology. In R.O. Brinkhurst and D.G. Cook, eds., Aquatic Oligochaete Biology. Plenum Press, New York, NY, pp. 433–456.

    Chapter  Google Scholar 

  56. Connell, D.W., M. Bowman and D.W. Hawker. 1988. Bioconcentration of chlorinated hydrocarbons from sediment by oligochaetes. Ecotoxicol. Environ. Saf. 16: 293302.

    Google Scholar 

  57. Di Toro, D.M., C.S. Zarba, D.J. Hansen, W.J. Berry, R.C. Swartz, C.E. Cowan, S.P. Pavlou, H.E. Allen, N.A. Thomas and P.R. Paquin. 1991. Technical basis for establishing sediment quality criteria for nonionic organic chemicals by using equilibrium partitioning. Environ. Toxicol. Chem. 10: 1541–1583.

    Article  Google Scholar 

  58. U.S. Environmental Protection Agency. 1989. Briefing report to the EPA Science Advisory Board on the equilibrium partitioning approach to generating sediment quality criteria. Office of Water Regulations and Standards, Criteria and Standard Division, Washington, DC.

    Google Scholar 

  59. Prater, B.L. and M.A. Anderson. 1977. A 96-hour bioassay of Duluth and Superior harbor basins (Minnesota) using Hexagenia limbata, Asellus communis, Daphnia magna and Pimephales promelas as test organisms. Bull. Environ. Contain. Toxicol. 18: 159–168.

    Article  CAS  Google Scholar 

  60. Benoit, D.A., G.L. Phipps and G.T. Ankley. 1993. A sediment testing intermittent renewal system for the automated renewal of overlying water in toxicity tests with contaminated sediments. Water Res. 25: 1403–1412.

    Article  Google Scholar 

  61. Ziegenfuss., P.S., W.J. Renaudette and W.J. Adams. 1986. Methodology for assessing the acute toxicity of chemicals sorbed to sediments: Testing the equilibrium partitioning theory. In T.M. Poston and R. Purdy, eds., Aquatic Toxicology and Environmental Fate. Vol. 9. STP 921. American Society for Testing and Materials, Philadelphia, PA, pp. 479–493.

    Google Scholar 

  62. Chapman, P.M. 1986. Sediment quality criteria from the sediment quality triad: An example. Environ. Toxicol. Chem. 5: 957–964.

    Article  CAS  Google Scholar 

  63. McCarty, L.S. and D. Mackay. 1993. Enhancing ecotoxicological modelling and assessment. Body residues and modes of toxic action. Environ. Sci. Technol. 27: 17191728.

    Google Scholar 

  64. Burton, G.A. Jr. 1992. Assessing the toxicity of freshwater sediments. Environ. Toxicol. Chem. 10: 1585–1627.

    Article  Google Scholar 

  65. Van De Guchte, C. and H. Maas-Diepeveen. 1988. Screening sediments for toxicity: A water concentration related problem. Proceedings of the 14th Annual Aquatic Toxicity Workshop, 2–4 November 1987. Can. Tech. Rep. Fish. Aquat. Sci. 1607, Toronto, Canada., pp. 81–91.

    Google Scholar 

  66. Van Gestel, C.A.M. 1992. The influence of soil characteristics on the toxicity of chemicals for earthworms: A review. In P.W. Greig-Smith, H. Becker, P.J. Edwards, and F. Heimbach, eds., Ecotoxicology of Earthworms. Intercept Ltd., Andover, UK., pp. 44–54.

    Google Scholar 

  67. Van Gestel, C.A.M. and N.M. Van Straalen. 1994. Ecotoxicological test systems for terrestrial invertebrates. In M.H. Donker, H. Eijsackers and F. Heimbach, eds., Ecotoxicology of Soil Organisms. Lewis Publ., London, UK., pp. 205–229.

    Google Scholar 

  68. Van Gestel, C.A.M., W.A. Van Dis, E.M. Van Breemen and P.M. Sparenburg. 1989. Development of a standardized reproduction toxicity test with thé earthworm species Eisenia fetida andrei using copper, pentachlorophenol, and 2,4 dichloroaniline. Ecotoxicol. Environ. Saf. 18: 305–312.

    Article  Google Scholar 

  69. Kokta, C. 1992. A laboratory test on sublethal effects of pesticides on Eisenia fetida. In P.W. Greig-Smith, H. Becker, P.J. Edwards, and E. Heimbach, eds., Ecotoxicology of Earthworms. Intercept Press, Andover, UK., pp. 213–217.

    Google Scholar 

  70. U.S. Environmental Protection Agency. 1985. Avian single–dose oral LD50. USEPA Hazard Evaluation Division, standard evaluation procedure 540/9–85–007, Washington, DC.

    Google Scholar 

  71. Van Wensem, J. 1989. A terrestrial micro-ecosystem for measuring effects of pollutants on isopod-mediated litter decomposition. Hydrobiologia 188 /189: 507–516.

    Article  Google Scholar 

  72. Lloyd, R. 1961. The toxicity of ammonia to rainbow trout (Salmo gairdneri Richardson). Water and Waste Treatm. J. 8: 278–279.

    Google Scholar 

  73. Hesterberg, D., W. M. Stigliani and A.C. Imeson. 1992. Chemical time bombs: Linkages to scenarios of socioeconomic development. Report 20. International Institute for Applied System Analysis, Laxenburg, Austria.

    Google Scholar 

  74. Bergema, W.F. and N.M. Van Straalen. 1991. Ecological risks of increased bioavailability of cadmium and lead as a consequence of soil acidification. Report TCB91/04-R. Technical Committee on Soil Protection, The Hague, The Netherlands [in Dutch].

    Google Scholar 

  75. Brown, V.M. 1968. The calculation of the acute toxicity of mixtures of poisons to rainbow trout. Water Res. 2: 723–733.

    Article  CAS  Google Scholar 

  76. Jagers op Akkerhuis, G. 1994. Effects of walking activity and physical factors on the short term toxicity of deltamethrin spraying in adult epigeal money spiders (Linyphiidae). In M.H. Donker, H. Eijsackers and F. Heimbach, eds., Ecotoxicology of Soil Organisms. Lewis Publ., London, UK., pp. 323–338.

    Google Scholar 

  77. Plackett, R.L. and P.S. Hewlett. 1952. Quantal responses to mixtures of poisons. J. Roy. Stat. Soc. B. 14: 141–163

    Google Scholar 

  78. European Inland Fisheries Advisory Commission. 1987. Revised report on combined effects on freshwater fish and other aquatic life. EIFAC Technical Paper 37 Rev. 1. FAO, Rome, Italy.

    Google Scholar 

  79. Könemann, H. 1981. Fish toxicity tests with mixtures of more than two chemicals: A proposal for a quantitative approach and experimental results. Toxicology 19: 229238.

    Google Scholar 

  80. Hermens, J., H. Canton, P. Janssen and R. De Jong. 1984. Quantitative structure-activity relationships and mixture toxicity studies of chemicals with anaesthetic potency: Acute lethal and sublethal toxicity to Daphnia magna. Aquat. Toxicol. 5: 143–154

    Article  CAS  Google Scholar 

  81. Hermens, J., E. Broekhuyzen, H. Canton and R. Wegman. 1985. Quantitative structure-activity relationships and mixture toxicity studies of alcohols and chlorohydrocarbons: Effects on growth of Daphnia magna. Aquat. Toxicol. 6: 209–217.

    Article  CAS  Google Scholar 

  82. Hermens, J., P. Leeuwangh, P. and A. Musch. 1984. Quantitative structure-activity relationships and mixture toxicity studies of chloro-and alkylanilines at an acute toxicity level to the guppy (Poecilia reticulata). Ecotoxicol. Environ. Saf. 8: 388–394.

    Article  CAS  Google Scholar 

  83. Deneer, J.W., T.L. Sinnige, W. Seinen and J.L.M. Hermens. 1988. The joint acute toxicity to Daphnia magna of industrial organic chemicals at low concentrations. Aquat. Toxicol. 12: 33–38.

    Article  CAS  Google Scholar 

  84. Hermens, J. and P. Leeuwangh. 1982. Joint toxicity of mixtures of 8 and 24 chemicals to the guppy (Poecilia reticulata). Ecotoxicol. Environ. Saf. 6: 302–310.

    Article  CAS  Google Scholar 

  85. Hermens, J., H. Canton, N. Steyger and R. Wegman. 1984. Joint effects of a mixture of 14 chemicals on reproduction of Daphnia magna. Aquat. Toxicol. 5: 315322.

    Google Scholar 

  86. Enserink, E.L., J.L. Maas-Diepeveen and C.J. Van Leeuwen. 1991. Combined effects of metals: An ecotoxicological evaluation. Water Res. 25: 679–687.

    Article  CAS  Google Scholar 

  87. Spehar, R.L. and J.L. Fiandt. 1986. Acute and chronic effects of water quality criteria-bases metal mixtures on three aquatic species. Environ. Toxicol. Chem. 5: 917–931.

    Article  CAS  Google Scholar 

  88. Risk Assessment Forum. 1992. Framework for ecological risk assessment. Report 630/R-92/001. U.S. Environmental Protection Agency, Washington, DC.

    Google Scholar 

  89. U.S. Environmental Protection Agency. 1984. Estimating “concern levels” for concentrations of chemical substances in the environment. Environmental Effect Branch, Health and Environmental Review Division, Washington, DC.

    Google Scholar 

  90. Aldenberg, T. and W. Slob. 1993. Confidence limits for hazardous concentrations based on logistically distributed NOEC toxicity data. Ecotoxicol. Environ. Saf. 25: 48–63.

    Article  CAS  Google Scholar 

  91. Wagner C. and H. Lokke. 1990. Estimation of ecotoxicological protection levels from NOEC toxicity data. Water Res. 25: 1237–1242.

    Article  Google Scholar 

  92. Kooijman, S.A.L.M. 1987. A safety factor for LC50 values allowing for differences in sensitivity among species. Water Res. 21: 269–276.

    Article  CAS  Google Scholar 

  93. Van Straalen N.M. and C.A.J. Denneman. 1989. Eco-toxicological evaluation of soil quality criteria. Ecotoxicol. Environ. Saf. 18: 241–251.

    Google Scholar 

  94. D’Agostino, R.B. and M.A. Stephens. 1986. Goodnessof-Fit Techniques. M. Dekker Inc. New York, NY.

    Google Scholar 

  95. Aldenberg, T. 1993. ETX 1.3a. A program to calculate confidence limits for hazardous concentrations based on small samples of toxicity data. Report 719102015. National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands.

    Google Scholar 

  96. Erickson, R.J. and C.E. Stephan. 1984. Calculating the final acute value for water quality criteria for aquatic organisms. Report 600/X-84–040. Environmental Research Laboratory-Duluth, Office of Research and Development, USEPA, Duluth, MN.

    Google Scholar 

  97. Slooff, W. and J.H. Canton. 1983. Comparison of the susceptibility of 11 freshwater species to 8 chemical compounds. II (Semi-)-chronic toxicity tests. Aquat. Toxicol. 4: 271–282.

    Article  CAS  Google Scholar 

  98. Romijn, C.A.E, R. Luttik, D. Van De Meent, W. Slooff and J.H. Canton. 1993. Presentation and analysis of a general algorithm for risk-assessment on secondary poisoning. Ecotoxicol. Environ. Saf. 26: 61–85.

    Article  CAS  Google Scholar 

  99. Romijn, C.A.E, R. Luttik, D. Van De Meent, W. Slooff and J.H. Canton. 1991. Presentation and analysis of a general algorithm for risk-assessment on secondary poisoning. Part II. Terrestrial food chains. Report 679102007, National Institute of Public Health and Environmental Protection, Bilthoven, The Netherlands.

    Google Scholar 

  100. Lehman, A.J. Untitled. 1954. Assoc. Food Drug Off. Quart. Bull. 18: 66.

    Google Scholar 

  101. Mackay, D. 1982. Correlation of bioconcentration factors. Environ. Sci. Technol. 16: 274–278.

    Article  CAS  Google Scholar 

  102. Connell, D.W. and R.W. Markwell. 1990. Bioaccumutation in the soil to earthworm system. Chemosphere 20: 91–100.

    Article  CAS  Google Scholar 

  103. Macintosh D.L., G.W. Suter II and F.O. Hoffman 1992. Model of PCB and mercury exposure to mink and great blue heron inhabiting the off-site environment downstream from the U.S. Department of Energy Oak Ridge Reservation. ORNL/ER-90. Oak Ridge National Library, Oak Ridge, TN.

    Google Scholar 

  104. Herricks, E.E. and D.J. Schaeffer. 1984. Compliance biomonitoring-standard development and regulation enforcement using biomonitoring data In D. Pascoe and R.W. Edwards, eds., Freshwater Biological Monitoring, Pergamon Press, Oxford, UK., pp. 153–166.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Van Leeuwen, C.J. (1995). Ecotoxicological Effects. In: van Leeuwen, C.J., Hermens, J.L.M. (eds) Risk Assessment of Chemicals. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8520-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8520-0_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-015-8522-4

  • Online ISBN: 978-94-015-8520-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics