Skip to main content

The Leaching of Major and Trace Elements from Coal Ash

  • Chapter
Environmental Aspects of Trace Elements in Coal

Part of the book series: Energy & Environment ((ENEN,volume 2))

Abstract

Most power stations currently operate wet ash disposal systems. However, this method of ash disposal is being subjected to increasing scrutiny as there is a potential for contamination of surface and groundwaters by trace elements leached from the ash (Carlson and Adriano, 1993). Very high liquid to solid ratios of 10:1 to 20:1 are typically used in ash sluicing systems (Chu et al., 1978). Consequently, large volumes of water containing elements dissolved from the ash are produced. The composition of the water in an ash pond will be determined by the ash itself, by the quality of water used for sluicing, and by the relationship of the ash pond to other components of the power station water circuit (Figure 12.1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adriano, D.C., Page, A.L., Elseewi, A.A., Chang, A.C. and Straughan, I. (1980) Utilization and disposal of fly ash and other coal residues in terrestrial ecosystems: a review, J. Environ. Qual. 9, 333–344.

    Article  CAS  Google Scholar 

  • Ainsworth, C.C. and Rai, D. (1987) Chemical Characterization of Fossil Fuel Wastes, EPRI EA-5321. EPRI, Palo Alto, CA.

    Google Scholar 

  • Allison, J.D., Brown, D.S. and Novo-Gradac, K.J. (1991) MINTEQA2/ PRODEFA2, A Geochemical Assessment Model for Environmental Systems: Version 3.0 User’s Manual, EPA/600/3–91/021. Environ. Res. Lab., Office of Research and Development, USEPA, Athens, Georgia.

    Google Scholar 

  • ASTM (1986) Standard test method for shake extraction of solid waste with water D3987–85, in Annual Book of Am. Soc. Test. Mater. Standards-Water and Environmental Technology, 11.04. Am. Soc. Test. Mater., Philadelphia, pp. 25–28.

    Google Scholar 

  • Bartlett, R.J. and James, B.R. (1988) Mobility and bioavailability of chromium in soils, in J.O. Nriagu and E. Nieboer (eds.), Chromium in the Natural and Human Environments, Adv. in Environ. Sci. and Technol. Ser., Vol. 20. Wiley-Interscience, New York, pp. 267–304.

    Google Scholar 

  • Benjamin, M.M. and Leckie, J.O. (1981) Conceptual model for metal-ligand-surface interactions during adsorption, Environ. Sci. Technol. 15, 1050–1057.

    Article  CAS  Google Scholar 

  • Bourg, A.C.M. (1988) Metals in aquatic and terrestrial systems: sorption, speciation and mobilisation, in W. Salomons and U. Förstner (eds.), Chemistry and Biology of Solid Waste-Dredged material and mine tailings, Springer-Verlag, New York, pp. 3–32.

    Chapter  Google Scholar 

  • Brannon, J.M. and Patrick Jr., W.H. (1987) Fixation, transformation, and mobilization of arsenic in sediments, Environ. Sci. Technol. 21, 450–459.

    Article  CAS  Google Scholar 

  • Brown, T.H. (1990) Solubility, sorption, and redox relationships for selenium in reclaimed environments-a review, in R.C. Severson, S.E. Fisher Jr. and L.P. Gough (eds.), Proc. 1990 Billings Land Reclam. Symp. Selenium in Arid and Semiarid Environments, Western United States, US Geol. Surv. Circ. 1064, pp. 25–34.

    Google Scholar 

  • Carlson, C.L. and Adriano, D.C. (1993) Environmental impacts of coal combustion residues, J. Environ. Qual. 22, 227–247.

    Article  CAS  Google Scholar 

  • Chapman, B.M., Jones, D.R. and Jung, R.F. (1983) Processes controlling metal ion attenuation in acid mine drainage streams, Geochim. Cosmochim. Acta 47, 1957–1973.

    Article  CAS  Google Scholar 

  • Chu, T.J., Ruane, R.J. and Krenkel, P.A. (1978) Characterization and reuse of ash pond effluents in coal-fired power plants, J. Water Pollut. Control Fed., 2494–2508.

    Google Scholar 

  • Clarke, L.B. and Sloss, L.L. (1992) Trace elements-emissions from coal combustion and gasification, IEACR/49. IEA Coal Research, London, 111 pp.

    Google Scholar 

  • Cotton, F.A. and Wilkinson, G. (1988) Advanced Inorganic Chemistry, 5th ed. John Wiley, New York, 1455 pp.

    Google Scholar 

  • Cowan, C.A., Zachara, J.M. and Resch, C.T. (1990) Solution ion effects on the surface exchange of selenite on calcite, Geochim. Cosmochim. Acta 54, 2223–2234.

    Article  CAS  Google Scholar 

  • Cox, J.A., Lundquist, G.L., Przyjazny, A. and Schmulbach, C.D. (1978) Leaching of boron from coal ash, Environ. Sci. Technol. 12, 722–723.

    Article  CAS  Google Scholar 

  • Crecelius, E.A., Bloom, N.S., Cowan, C.E. and Jenne, E.A. (1986) Speciation of Selenium and Arsenic in Natural Waters and Sediments, EA-4641, Vol. 2: Arsenic Speciation, EPRI, Palo Alto, CA.

    Google Scholar 

  • Cullen, W.R. and Reimer, K. J. (1989) Arsenic speciation in the environment, Chem. Rev. 89, 713–764.

    Article  CAS  Google Scholar 

  • Cutter, G.A. (1991) Selenium Biogeochemistry in Reservoirs, Vol. 1: Time series and mass balance results, EN-7281, Final report, May 1991. EPRI, Palo Alto, CA.

    Google Scholar 

  • Davis, J.A. and Hayes, K.F. (1986) Geochemical processes at mineral surfaces: an overview, in J.A. Davis and K.F. Hayes (eds.), Geochemical Processes at Mineral Surfaces, ACS Symp. Ser. 323. Am. Chem. Soc., Washington, DC, pp. 2–18.

    Google Scholar 

  • Davison, R.L., Natusch, D.F.S., Wallace, J.R., and Evans C.A. (1974) Trace elements in fly ash: dependence of concentration on particle size, Environ. Sci. Technol. 8, 1107–1113

    Article  CAS  Google Scholar 

  • de Groot, G.J., Wijkstra, J., Hoede, D. and van der Sloot, H.A. (1989) Leaching characteristics of selected elements from coal fly ash as a function of the acidity of the contact solution and the liquid/solid ratio, in P.L. Côté and T.M. Gilliam (eds.), Environmental Aspects of Stabilization and Solidification of Hazardous and Radioactive Wastes, Am. Soc. Test. Mater. STP 1033, Am. Soc. Test. Mater., Philadelphia, pp. 170–183.

    Google Scholar 

  • Dodd, D. J. R. , Golomb, A., Chan, H. T. and Chartier, D. (1981) A comparative field and laboratory study of fly ash leaching characteristics, in R.A. Conway and B.C. Malloy (eds.), Hazardous Solid Waste Testing: First Conference, Am. soc Test Mater. STP 760. Am. Soc. Test. Mater., Philadelphia, pp. 164–185.

    Chapter  Google Scholar 

  • Doran, J.W. (1982) Microorganisms and the biological cycling of selenium, Adv. Microbiol. Ecol. 6, 1–32.

    Article  CAS  Google Scholar 

  • Dreesen, D.R., Gladney, E.S., Owens, J.W., Perkins, B.L., Wienke, C.L., and Wangen, L.E. (1977) Comparison of levels of trace elements extracted from fly as and levels found in effluent waters from a coal–fired power plant, Environ. Sci. Technol. 11, 1017–1019.

    Article  CAS  Google Scholar 

  • Dudas, M. J. (1981) Long term leachability of selected elements from fly ash, Environ. Sci. Technol. 15, 840–843.

    Article  CAS  Google Scholar 

  • Dusing, D.C., Bishop, P.L. and Keener, T.C. (1992) Effect of redox potential on leaching from stabilized/solidified waste materials, J. Air Waste Manage. Assoc. 42, 56–62.

    Article  CAS  Google Scholar 

  • Eary, L. E., Rai, D., Mattigod, S.V. and Ainsworth, C. C. (1990) Geochemical factors controlling the mobilization of inorganic constituents from fossil fuel combustion residues: II. Review of the minor elements, J. Environ. Qual. 19, 202–214.

    Article  CAS  Google Scholar 

  • Essington, M.E. (1988) Solubility of barium arsenate, Soil Sci. Soc. Am. J. 52, 1566–1570.

    Article  CAS  Google Scholar 

  • Evans, L.J. (1989) Chemistry of metal retention by soils, Environ. Sci. Technol. 23, 1046–1056.

    Article  CAS  Google Scholar 

  • Evans Jr., H.T., Manheim, F.T. and Landergren, S. (1969) Molybdenum, in K.H. Wedepohl (ed.), Handbook of Geochemistry, Vol. 2(4). Springer-Verlag, New York, pp. 42-H-1 to 42-H-5.

    Google Scholar 

  • Ferguson, K.D. and Erickson, P.M. (1988) Pre-mine prediction of acid mine drainage, in W. Salomons and U. Forstner (eds.), Environmental Management of Solid Waste-Dredged Material and Mine Tailings, Springer-Verlag, New York, pp. 24–43.

    Chapter  Google Scholar 

  • Fowle III, J.R., Abernathy, C.O., Mass, M.J., McKinney, J.D., North, D.W., Ohanian, E.V. and Uthus, E. (1992) Arsenic health research needs, in B.D. Beck (ed.), Trace Sustances in Environmental Health — XXV, pp. 257–271.

    Google Scholar 

  • Frigge, J. (1988) Lysimeter tests to evaluate the disposal behaviour of power plant residues. VGB Kraftwerkstechnik 68, 143–150.

    CAS  Google Scholar 

  • Fruchter, J.S., Rai, D. and Zachara, J.M. (1990) Identification of solubility–controlling solid phases in a large fly ash field lysimeter, Environ. Sci. Technol. 24, 1173–1179.

    Article  CAS  Google Scholar 

  • Furr, A.K., Parkinson, T.F., Hinrichs, R.A., Van Campen, D.R., Bache, C.A., Gutenmann, W.H., John, St. L.E., Patkala, I.S., and Lisk, D.J. (1977) National Survey of elements and radioactivity in fly ashes-adsorption of elements by cabbage grown in fly ash-soil mixtures, Environ.Sci. Technol. 11, 1194–1201

    Article  CAS  Google Scholar 

  • Furuya, K., Miyajima, Y., Chiba, T. and Kikuchi, T. (1987) Elemental characterization of particle size-density separated coal fly ash by spectrophotometry, inductively coupled plasma emission spectrometry, and scanning electron microscopy-energy dispersive X-ray analysis, Environ. Sci. Technol. 21, 898–903.

    Article  CAS  Google Scholar 

  • Goldberg, S. and Glaubig, R.A. (1985) Boron adsorption on aluminium and iron oxide minerals, Soil Sci. Soc. Am. J. 49, 1374–1379.

    Article  CAS  Google Scholar 

  • Goldberg, S. and Glaubig, R.A. (1986) Boron adsorption and silica release by the clay minerals kaolinite, montmorillonite, and illite, Soil Sci. Soc. Am. J. 50, 1442–1448.

    Article  CAS  Google Scholar 

  • Grisafe, D.A., Angino, E.E. and Smith, S.M. (1988) Leaching characteristics of a high-calcium fly ash as a function of pH: a potential source of selenium toxicity, Appl. Geochem. 3, 601–608.

    Article  CAS  Google Scholar 

  • Gulens, J., Champ, D.R. and Jackson, R.E. (1979) Influence of redox environments on the mobility of arsenic in groundwater, in E.A. Jenne (ed.), Chemical Modelling in Aqueous Systems, ACS Symp. Ser., Vol. 93, Am. Chem. Soc., Washington, DC, pp. 81–95.

    Chapter  Google Scholar 

  • Hansen, L.D. and Fisher, G.L., (1980) Elemental distribution in coal fly ash particles, Environ. Sci. Technol. 14, 1111–1117.

    Article  CAS  Google Scholar 

  • Hansen, L. D., Silberman, D., Fisher, G.L. and Eatough, D. J. (1984) Chemical speciation of elements in stack-collected, respirable-size, coal fly ash, Environ. Sci. Technol. 18, 181–186.

    Article  CAS  Google Scholar 

  • Hermann, R. and Neumann-Mahlkau, P. (1985) The mobility of zinc, cadmium, copper, lead, iron, and arsenic in groundwater as a function of redox potential and pH, Sci. Total Environ. 43, 1–12.

    Article  CAS  Google Scholar 

  • Herring, J.R. (1990) Selenium geochemistry-a conspectus, in R.C. Severson, S.E. Fisher Jr. and L.P. Gough (eds.), Proc. 1990 Billings Land Reclam. Symp. on Selenium in Arid and Semiarid Environments in the Western United States, US Geol. Surv. Circ. 1064, pp. 5–24.

    Google Scholar 

  • Hollis, J.F., Keren, R. and Gal, M. (1988) Boron release and sorption by fly ash as affected by pH and particle size, J. Environ. Qual. 17, 181–184.

    Article  CAS  Google Scholar 

  • Hostetler, C.J. and Erickson, R.L. (1989) Fastchem Package: Vol. 5. User’s guide to the EICM coupled geohydrochemical transport code, EA-5870-CCM, EPRI, Palo Alto, CA.

    Google Scholar 

  • Hostetler, C.J., Erikson, R.L. and Kincaid, C.T. (1990) Description of the FASTCHEM code package with applications, in I.P. Murarka and S. Cordle (eds.), Proc. Environ. Res. Conf. Groundwater Quality and Waste Disposal, EPRI EN-6749, EPRI, Palo Alto, CA, pp. 16–1 to 16–30.

    Google Scholar 

  • Howard III, J.H. (1977) Geochemistry of selenium: formation of ferroselite and selenium behaviour in the vicinity of oxidising sulfide and uranium deposits, Geochim. Cosmochim. Acta 41, 1665–1678.

    Article  CAS  Google Scholar 

  • Hulett, L.D. and Weinberger, A.J. (1980) Some etching studies of the microstructure and composition of large aluminosilicate particles in fly ash from coal-burning power plants, Environ. Sci. Technol. 14, 965–970.

    Article  CAS  Google Scholar 

  • Hulett Jr., L. D., Weinberger, A. J., Northcutt, K.J. and Ferguson, M. (1980) Chemical species in fly ash from coal-burning power plants, Science 210, 1356–1358.

    Article  CAS  Google Scholar 

  • Hutchison, I.P.G. and Ellison, R.D. (eds.) (1992) Mine Waste Management. Lewis Publishers, MI, 654 pp.

    Google Scholar 

  • Jackson, D.R. and Bisson, D.L. (1990) Comparison of laboratory batch methods and large columns for evaluating leachate from monofilled solid wastes, J. Air Waste Manage. Assoc. 40, 1514–1521.

    Article  CAS  Google Scholar 

  • Jackson, D.R., Garrett, B.C. and Bishop, T.A. (1984) Comparison of batch and column methods for assessing leachability of hazardous waste, Environ. Sci. Technol. 18, 668–673.

    Article  CAS  Google Scholar 

  • Jenne, E.A. (1977) Trace element sorption by sediments and soils-sites and processes, in W.R. Chappell and K.K. Petersen (eds.), Molybdenum in the Environment, Vol. 2. Dekker, New York, pp. 425–553.

    Google Scholar 

  • Johnston, H.M. and Eagleson, K.E. (1991) Chemical Characteristics of Ontario Hydro Coal Fly Ash: A Review, Rep. No. 89–155-K, Ontario Hydro Res. Div., 60pp.

    Google Scholar 

  • Jones, D.R. (1990) Batch leaching studies of Rundle oil shale, J. Environ. Qual. 19. 408–413.

    Article  CAS  Google Scholar 

  • Jones, D.R., Chapman, B.M. and Jung, R.F. (1990) Column leaching of unretorted and retorted oil shales and claystone from the Rundle deposit: water leaching, Water Res. 24, 131–141.

    Article  CAS  Google Scholar 

  • Kaufherr, N., Shenasa, M. and Lichtman, D. (1985) X-ray photoelectron spectroscopy studies of coal fly ashes with emphasis on depth profiling of submicrometer particle size fractions, Environ. Sci. Technol. 19, 609–614.

    Article  CAS  Google Scholar 

  • Kim, Y.A. and Zeitlin, H. (1968) The determination of molybdenum in seawater, Limnol. Oceanog. 13, 534.

    Article  Google Scholar 

  • Kinniburgh, D.G. and Jackson, M.J. (1981) Cation adsorption by hydrous metal oxides and clay, in M.A. Anderson and A.J. Rubin (eds.), Adsorption of Inorganics at Solid-Liquid Interfaces, Ann Arbor Science, Ann Arbor, MI, pp. 91–160.

    Google Scholar 

  • Kinniburgh, D.G. and Jackson, M.L. (1982) Concentration and pH dependence of calcium and zinc adsorption by hydrous iron oxide gel, Soil Sci. Soc. Am. J. 46, 56–61.

    Article  CAS  Google Scholar 

  • Kopsick, D.A. and Angino, E.E. (1981) Effect of leachate solutions from fly and bottom ash on groundwater quality, J. Hydrology 54, 341–356.

    Article  CAS  Google Scholar 

  • Langmuir, D. and Whittemore, D.O. (1971) Variations in the stability of precipitated ferric oxyhydroxides, in R.F. Gould (ed.), Nonequilbrium Systems in Natural Waters, ACS Adv. Chem. Ser. Vol. 106. Am. Chem. Soc., Washington, pp. 209–234.

    Chapter  Google Scholar 

  • Läuchli, A (1993) Selenium in plants: uptake, functions, and environmental toxicity, Bot. Acta 106, 455–468.

    Google Scholar 

  • Leckie, J.O ., Benjamin, M. M., Hayes, K. , Kaufman, G. and Altmann, S. (1980) Adsorption/Coprecipitation of trace elements from water with iron hydroxide, EPRI CS-1513, EPRI, Palo Alto, CA.

    Google Scholar 

  • McKenzie, R.M. (1980) The adsorption of lead and other heavy metals on oxides of manganese and iron, Aust. J. Soil Res. 18, 61–73.

    Article  CAS  Google Scholar 

  • McNeal, J.M. and Balistrieri, L.S. (1989) Geochemistry and occurence of selenium: an overview, in L.W. Jacobs (ed.), Selenium in Agriculture and the Environment, SSSA Spec. Publ. No. 23, Am. Soc. Agron. and Soil Sci. Soc. of Am., Madison, WI, pp. 1–14.

    Google Scholar 

  • Mangold, D.C. and Tsang, C. (1991) A summary of subsurface hydrological and hydrochemical models, Rev. Geophys. 29, 51–79.

    Article  Google Scholar 

  • Masscheleyn, P. H., Delaune, R.D. and Patrick Jr., W. H. (1991) Arsenic and selenium chemistry as affected by sediment redox potential and pH, J. Environ. Qual. 20, 522–527.

    Article  CAS  Google Scholar 

  • Mattigod, S.V., Frampton, J.A. and Lim, C.H. (1985) Effect of ion-pair formation on boron adsorption by kaolinite, Clays Clay Miner. 33, 433–437.

    Article  CAS  Google Scholar 

  • Mattigod, S.V., Rai, D., Eary, L.E. and Ainsworth, C. C. (1990) Geochemical factors controlling the mobilization of inorganic constituents from fossil fuel combustion residues: I. Review of the major elements, J. Environ. Qual. 19, 188–201.

    Article  CAS  Google Scholar 

  • Merrill, D.T., Manzione, M.A. and Parker, D.S. (1987) Field evaluation of arsenic and selenium removal by iron coprecipiation, Environ. Prog. 6, 82–90.

    Article  CAS  Google Scholar 

  • Meyer, H. J. (1984) The influence of impurities on the growth rate of calcite, J. Cryst. Growth 66, 639–646.

    Article  CAS  Google Scholar 

  • Miller, D.M., Sumner, M.E. and Miller, W. P. (1989) A comparison of batch– and flow-generated anion adsorption isotherms, Soil Sci. Soc. Am. J. 53, 373–380.

    Article  CAS  Google Scholar 

  • Moore, J.H., Ficklin, W.H. and Johns, C. (1988) Partitioning of arsenic and metals in reducing sulfidic sediments, Environ. Sci. Technol. 22, 432–437.

    Article  CAS  Google Scholar 

  • Murarka, I.P. and McIntosh, D.A. (1987) Solid Waste Environmental Studies (SWES): Description, Status, and Available Results, Special Report ed., EA-5322-SR, EPRI, Palo Alto, CA.

    Google Scholar 

  • Murarka, I.P. and Quinn, A. (1992) Leaching chemistry of combustion by-products, EPRI J. (Jan/Feb), 47–50.

    Google Scholar 

  • Nordstrom, D.K. (1982) Aqueous pyrite oxidation and the consequent formation of secondary iron minerals, in J.A. Kittrick, D.S. Fanning and L.R. Hossner (eds.), Acid Sulfate Weathering, Soil Sci. Soc. Am., Madison, WI, pp. 37–56.

    Google Scholar 

  • Nriagu, J.O. (1990) Global metal pollution: poisoning the biosphere?, Environment 32, 7–33.

    Article  Google Scholar 

  • Perket, C.L. and Webster, W.C. (1981) Literature review of batch laboratory leaching and extraction procedures, in R.A. Conway and B.C. Malloy (eds.), Hazardous Solid Waste Testing: First Conf., Am. Soc. Test. Mater. STP 760, Am. Soc. Test. Mater., Philadephia, pp. 7–27.

    Google Scholar 

  • Pierce, M.L. and Moore, C.B. (1982) Adsorption of arsenite and arsenate on amorphous iron hydroxide, Water Res. 16, 1247–1253.

    Article  CAS  Google Scholar 

  • Reardon, E.J., Warren, C.J. and Hobbs, M.Y. (1993) Reduction of trace element concentrations in alkaline waste porewaters by dedolomitization, Environ. Sci. Technol. 27, 310–315.

    Article  CAS  Google Scholar 

  • Robins, R.G. (1985) The aqueous chemistry of arsenic in relation to hydrometallurgical processes, in Impurity Control and Disposal, 24th Ann. Conf. Metallurgists, Vancouver, Canada, Aug. 18–22, pp. 1–1 to 1–26.

    Google Scholar 

  • Roy, W.R. and Griffin, R.A. (1984) Illinois Basin coal fly ashes. 2. Equilibria relationships and qualitative modelling of ash-water reactions, Environ. Sci. Technol. 18, 739–742.

    Article  CAS  Google Scholar 

  • Roy, W.R., Griffin, R.A., Dickerson, D.R. and Schuller, R.M. (1984) Illinois Basin coal fly ashes. 1. Chemical characterization and solubility, Environ. Sci. Technol. 18, 734–739.

    Article  CAS  Google Scholar 

  • Sack, W.A., Boomer, B.A., Tarantino, J.T., Keefer, G.B., Seals, R.K. and Miller, M. (1981) Evaluation of fly ash leachability using batch leaching procedures, in R.A. Conway and B.C. Malloy (eds.), Hazardous Solid Waste Testing: First Conf., Am. Soc. Test. Mater. STP 760, Am. Soc. Test. Mater., Philadelphia, pp. 61–82.

    Google Scholar 

  • Sato, K. (1986) Leaching Characteristics of various elements from coal ash, Vol. ET86001, Central Res. Inst. Elec. Power Ind.

    Google Scholar 

  • Singh, S.P.N. and Mattigod, S.V. (1992) Modelling boron adsorption on kaolinite, Clays Clay Miner. 40, 192–205.

    Article  CAS  Google Scholar 

  • Sorini, S.S. and Jackson, L.P., (1988) Evaluation of the Toxicity Characteristic Leaching Procedure (TCLP) on utility wastes, Nucl. Chem. Waste Manage. 8, 217–223.

    Article  CAS  Google Scholar 

  • Stumm, W. and Morgan, J. J. (1981) Aquatic Chemistry — An Introduction Emphasising Chemical Equlibria in Natural Waters, 2nd ed. Wiley-Interscience, New York, 780 pp.

    Google Scholar 

  • Swaine, D.J. (1981) Flyash for use — not waste, Proc. 1st Int. Waste Recycling Symp., Clean Japan Centre, Tokyo, 405–417.

    Google Scholar 

  • Swaine, D.J. (1990) Trace elements in coal. Butterworth and Co. Ltd, London, 276pp.

    Google Scholar 

  • Talbot, R.W., Anderson, M.A. and Andren, A.W. (1978) Qualitative model of heterogeneous equilibria in a fly ash pond, Environ. Sci. Technol. 12, 1056–1062.

    Article  CAS  Google Scholar 

  • Theis, T.L. and Wirth, J.L. (1977) Sorptive behaviour of trace metals on fly ash in aqueous solution, Environ. Sci. Technol. 11, 1096–1100.

    Article  CAS  Google Scholar 

  • Theis, T.L. and Richter, R.O. (1979) Chemical speciation of heavy metals in power plant ash pond leachate, Environ. Sci. Technol. 13, 219–224.

    Article  CAS  Google Scholar 

  • Turner, R.R. (1981) Oxidation state of arsenic in coal ash leachate, Environ. Sci. Technol. 15, 1062–1066.

    Article  CAS  Google Scholar 

  • Turner, R.R., Lowry, P., Levin, M., Lindberg, S.E. and Tamura, T. (1982) Leachability and Aqueous Speciation of Selected Trace Constituents of Fly Ash, EPRI EA-2588, Final Rep., Sept. 1982, EPRI, Palo Alto, CA.

    Google Scholar 

  • USEPA (1980) EP Toxicity Test Procedure, Federal Register, Vol. 45; May 19, 1980. ed., US Government, Washington, D.C., pp. 33127–33129.

    Google Scholar 

  • USEPA (1990) Toxicity Characteristic Leaching Procedure (TCLP), Method 1311, Federal Register, Vol. 55; March 29, 1990 ed. U.S. Government, Washington, D.C., pp. 11827–11875.

    Google Scholar 

  • van der Sloot, H.A. (1990) Leaching behaviour of waste and stabilised waste materials: characterisation for environmental assessment purposes, Waste Manage. Res. 8, 215–228.

    Google Scholar 

  • van der Sloot, H.A. (1991) Systematic leaching behaviour of trace elements from construction materials and waste materials, in J.J.J.R. Goumans, H.A. van der Sloot and ThG. Aalbers (eds.), Waste Materials in Construction. Elsevier, Amsterdam, pp. 19–36.

    Chapter  Google Scholar 

  • van der Sloot, H.A. and Nieuwendijk, B.J.T. (1985) Release of trace elements from surface-enriched fly ash in seawater, in I.W. Duedall, D.R. Kester and P.K. Park (eds.), Wastes in the Ocean, Vol. 4: Energy Wastes in the Ocean, Wiley ,New York, pp. 468–497.

    Google Scholar 

  • van der Sloot, H.A., Piepers, O. and Kok, A. (1984) A Standard Leaching Test for Combustion Residues, English Translation of BEOP-25, Studiegroep Ontwikkeling Standaard Uitloogtesten Verbrandingsresiduen (SOSUV), 50 pp.

    Google Scholar 

  • Villaume, J.F., Middlesworth, B.C. and Unites, D.F. (1981) Use of batchwise extraction procedure for coal ash disposal evaluation in R.A. Conway and B.C. Malloy (eds.), Hazardous Solid Waste Testing: First Conference, Am. Soc. Test. Mater. STP 760, Am. Soc. Test. Mater., Philadelphia, pp. 99–111.

    Chapter  Google Scholar 

  • Vuceta, J. and Morgan, J.J. (1978) Chemical modelling of trace metals in fresh waters: role of complexation and adsorption, Environ. Sci. Technol. 12, 1302–1309.

    Article  CAS  Google Scholar 

  • Wadge, A. and Hutton, M. (1987) The leachability and chemical speciation of selected trace elements in fly ash from coal combustion and refuse incineration, Environ. Pollut. 48, 85–99.

    Article  CAS  Google Scholar 

  • Wagemann, R. (1978) Some theoretical aspects of the stability and solubility of inorganic arsenic in the freshwater environment, Water Res. 12, 139–145.

    Article  CAS  Google Scholar 

  • Warren, C.J. and Dudas, M.J. (1984) Weathering processes in relation to leachate properties of alkaline fly ash, J. Environ. Qual. 13, 530–538.

    Article  CAS  Google Scholar 

  • Warren, C.J. and Dudas, M.J. (1986) Mobilization and Attenuation of Trace Elements in an Artificially Weathered Fly Ash, EA-4747, EPRI, Palo Alto, CA.

    Google Scholar 

  • Weast, R.C. (ed.) (1974) Handbook of Physics and Chemistry, 55th ed. CRC Press, Cleveland, OH.

    Google Scholar 

  • Welch, A.H., Lico, M.S. and Hughes, J.L. (1988) Arsenic in groundwater of the western United States, Groundwater 26, 333–347.

    Article  CAS  Google Scholar 

  • Weres, O. , Jaouini, A.R. and Tsao, L. (1989) The distribution, speciation and geochemical cycling of selenium in a sedimentary environment, Kesterson reservoir, California, USA, Appl. Geochem. 4, 543–563.

    Article  Google Scholar 

  • White, H.R., Powers, M.D., Shih, C.C. and Maddalone, R.F. (1984) Aqueous Discharges From Steam-Electric Power Plants: Data Evaluation, EPRI CS-3741, EPRI, Palo Alto, CA.

    Google Scholar 

  • Wu, E.J. and Chen, K.Y. (1987) Chemical Form and Leachability of Inorganic Trace Elements in Coal Ash, Final Rep., June 1987 ed., EPRI EA-5115, RP 131–1, EPRI, Palo Alto, CA.

    Google Scholar 

  • Zachara, J.M. and Streile, G.P. (1991) Use of batch and column methodologies to assess utility waste leaching and subsurface chemical attenuation, EN-7313, RP 2485–8, EPRI, Palo Alto, CA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Jones, D.R. (1995). The Leaching of Major and Trace Elements from Coal Ash. In: Swaine, D.J., Goodarzi, F. (eds) Environmental Aspects of Trace Elements in Coal. Energy & Environment, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8496-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8496-8_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4606-2

  • Online ISBN: 978-94-015-8496-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics