Tracking Contradictions in Geometry: The Idea of a Model from Kant to Hilbert

Part of the Synthese Library book series (SYLI, volume 251)


This paper explores such questions as who actually discovered non-euclidean geometry, who actually believed in its consistency and why, and who can be said to have proved it to be free of contradiction. To this end I will analyze some views and results if ten or so philosophers and mathematicians from Kant to Hilbert. One main theme is that without some rudimentary idea of a model, the discovery and establishment of non-euclidean geometry would not have been possible. Another is that only the notion of a model enabled thinkers to conceive of properties of logical inference such as soundness and completeness of axioms and/or rules. These themes are surprisingly difficult to articulate clearly without compromising historical accuracy, but I believe that in most cases the attempt to do so leads to a better understanding of the writers involved.


Euclidean Geometry Projective Geometry Hyperbolic Geometry Spherical Triangle Constant Negative Curvature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beltrami, Eugenio: 1868, `Saggio di interpretazione della geometria non euclidea’, Giornale di matematiche 6, 289–312.Google Scholar
  2. Brittan, Gordon, Jr.: 1978, Kant’s Theory of Science, Princeton University Press, Princeton. Dehn, Max: 1922, ‘Hilberts geometrische Werk’, Die Naturwissenschaften 27, Heft 4, 77–82.Google Scholar
  3. Dehn, Max: 1926, `Die Grundlagen der Geometrie in historischer Entwicklung’, in Moritz Pasch (ed.), Vorlesungen über die neuer Geometrie, Zweite Auflage, Springer, Berlin, pp. 185–271.Google Scholar
  4. Engel, Friedrich and Stäckel, Paul: 1913, Urkunden zur Geschide der nichteuklidischen Geometrie, I I Wolfgang and Johann Bolyai, B. G. Teubner, Leipzig und Berlin.Google Scholar
  5. Frege, Gottlob: 1980, Philosophical and Mathematical Correspondence, University of Chicago Press, Chicago.Google Scholar
  6. Freudenthal, Hans: 1960, `Die Grundlagen der Geometrie um die Wende des 19. Jahrhundrets’, Mathematisch-Physikalisch Semesterbericht 7, 2–25.Google Scholar
  7. Freudenthal, Hans: 1964, `Zu Herrn Bottemas Kritik’, Mathematisch-Physikalisch Semesterbericht 10, 114–117.Google Scholar
  8. Friedman, Michael: 1985, `Kant’s Theory of Geometry’, The Philosophical Review 94, 455–506.CrossRefGoogle Scholar
  9. Gómez, Ricardo: 1986, `Beltrami’s Kantian View of Non-euclidean Geometry’, Kantstudien 77, 102–107.Google Scholar
  10. Gray, Jeremy: 1989, Ideas of Space, 2nd ed. Clarendon Press, Oxford.Google Scholar
  11. Helmholtz, Hermann von: 1977, Epistemological Writings, ed. R. S. Cohen and Y. Elkana, D. Reidel, Dordrecht.Google Scholar
  12. Hilbert, David: 1902a, `Mathematical Problems’, Bulletin of the American Mathematical Society 8, 437–479.CrossRefGoogle Scholar
  13. Hilbert, David: 1902b, The Foundations of Geometry, trans. E. J. Townsend, Open Court, Chicago.Google Scholar
  14. Hilbert, David: 1971, Foundations of Geometry, trans. L. Unger, Open Court, La Salle.Google Scholar
  15. Hintikka, Jaakko: 1988, `On the Development of the Model-theoretic Viewpoint in Logical Theory’, Synthese 77, 1–36.CrossRefGoogle Scholar
  16. Kant, Immanuel: 1965, Critique of Pure Reason, trans. Norman Kemp Smith, St. Martin’s Press, New York.Google Scholar
  17. Kant, Immanuel: 1902–56, Kants gesammelte Schriften,Herausgegeben von der Preussischen Akademie der Wissenschaften zu Berlin, 23 vols., de Gruyter, Berlin. (Cited as `Akademie’ by volume number in the text).Google Scholar
  18. Kästner, Abraham: 1790, Was heisst in Euclids Geometrie möglich?’, Philosophisches Magazin 2, 391–402.Google Scholar
  19. Kästner, Abraham: 1790, `Über den mathematischen Begriff des Raums’, Philosophisches Magazin 2, 403–419.Google Scholar
  20. Kästner, Abraham: 1790, `über die geometrischen Axiome’, Philosophisches Magazin 2, 420–430.Google Scholar
  21. Klein, Felix: 1921, Gesammelte matematische Abhandlungen, hrsg. R. Fricke und A. Ostrowski, Springer, Berlin.CrossRefGoogle Scholar
  22. Lambert, Johann: 1895, `Theorie der Parallellinien’, in F. Engel and P. Stäckel (eds.), Theorie der Parallellinien von Euclid bis auf Gauss, B. G. Teubner, Leipzig, pp. 152–207.Google Scholar
  23. Martin, Gottfried: 1967, `Das geradlinige Zweieck, ein offener Widerspruch in der Kritik der reinen Vernunft’, in W. Arnold und H. Zelmer (eds.), Tradition und Kritik, Friedrich Frommann Verlag, Stuttgart, pp. 229–235.Google Scholar
  24. Russell, Bertrand: 1956, An Essay on the Foundations of Geometry, Dover Publications, Toronto.Google Scholar
  25. Scanlon, Michael: 1989, `Beltrami’s Model and the Independence of the Parallel Postulate’, History and Philosophy of Logic 3, 13–34.Google Scholar
  26. Sommer, Julius: 1900, ‘Hilbert’s Foundations of Geometry’, Bulletin of the American Mathematical Society 6, 287–299.CrossRefGoogle Scholar
  27. Stäckel, Paul: 1899, ‘Bemerkungen zu Lamberts Theorie der Parallellinien’, Bibliotheca mathematical 13, 107–110.Google Scholar
  28. Toepell, Michael-Markus: 1986, Über die Entstehung von David Hilberts “Grundlagen der Geometrie”, Vandenhoeck und Ruprecht, Göttingen.Google Scholar
  29. Torretti, Roberto: 1978, Philosophy of Geometry from Riemann to Poincare, D. Reidel, Dordrecht.CrossRefGoogle Scholar
  30. Webb, Judson: 1987, `Immanuel Kant and the Greater Glory of Geometry’, in A. Shimony and D. Nails (eds.), Naturalistic Epistemology, D. Reidel, Dordrecht, pp. 17–70.CrossRefGoogle Scholar
  31. Weyl, Hermann: 1970, `David Hilbert and his Mathematical Work’, in Constance Reid (ed.), Hilbert, Springer, Berlin, pp. 245–283.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  1. 1.Boston UniversityUSA

Personalised recommendations