Skip to main content

Well-Posed Problems in the Calculus of Variations

  • Chapter

Part of the book series: Mathematics and Its Applications ((MAIA,volume 331))

Abstract

A scalar minimization problem is called well-posed if there exists a unique solution which either attracts every minimizing sequence (according to a definition firstly isolated by Tikhonov), or depends continuously upon problem’s data (according to the classical notion which goes back to Hadamard), or both.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zolezzi, T.: Wellposedness criteria in optimization with application to the calculus of variations, to appear on Nonlinear Anal. TMA.

    Google Scholar 

  2. Dontchev, A. L. and Zolezzi, T.: Well-posed optimization problems, Lecture Notes in Math. 1543, Springer Verlag, Berlin, 1993.

    MATH  Google Scholar 

  3. Kuratowski, C.: Topologie, vol.1., Warszawa, 1958.

    MATH  Google Scholar 

  4. Attouch, H., and Wets, R. J.-B.: Quantitative stability of variational systems II. A framework for nonlinear conditioning, SIAM J. Optim. 3 (1993), 359–381.

    Article  MathSciNet  MATH  Google Scholar 

  5. Lemaire, B.: Bonne position, conditionnement, et bon comportement asymptotique, Sém. Anal. Convexe, Montpellier (1992), exp.5.

    Google Scholar 

  6. Fitzpatrick, S.: Metric projection and the differentiability of distance functions, Bull. Austral. Math. Soc. 22 (1980), 291–312.

    Article  MathSciNet  MATH  Google Scholar 

  7. Zolezzi, T.: Wellposedness of optimal control problems, Control Cybernet. 23 (1994), 289–301.

    MathSciNet  MATH  Google Scholar 

  8. Lions, P. L.: Generalized solutions of Hamilton-Jacobi equations, Research Notes in Math. 69, Pitman, Boston, 1982.

    MATH  Google Scholar 

  9. Fleming, W. H. and Soner, M. H.: Controlled Markov processes and viscosity solutions, Springer Verlag, Berlin, 1993.

    MATH  Google Scholar 

  10. Clarke, F. H. and Wolenski, P. R.: The sensitivity of optimal control problems to time delav. SIAM J. Control Optim. 29 (1991), 1176–1215.

    Article  MathSciNet  MATH  Google Scholar 

  11. Dal Maso, G.: An introduction to I-convergence, Birkhäuser Verlag, Basel, 1993.

    Book  Google Scholar 

  12. Zolezzi, T.: Well-posedness and the Lavrentiev phenomenon, SIAM J. Control Optirn. 30 (1992), 787–799.

    Article  MathSciNet  MATH  Google Scholar 

  13. Buttazzo, G.: The gap phenomenon for integral functionals: results and open questions, in Variational methods, nonlinear analysis and differential equations, Proc. Int. Workshop, Genova Nervi 1993. ECIG 1994.

    Google Scholar 

  14. Kutznetzov, N. N. and Siskin, A. A.: On a many dimensional problem in the theory of quasilinear equations, Z. Vycisl. Mat. Mat. Fiz. 4 (1964), 192–205.

    Google Scholar 

  15. Fleming, W. H.: The Cauchy problem for a nonlinear first order partial differential equation, J. Differential Equations 5 (1969), 515–530.

    Article  MathSciNet  MATH  Google Scholar 

  16. Dacorogna, B.: Direct methods in the calculus of variations, Springer Verlag, Berlin, 1989.

    Book  MATH  Google Scholar 

  17. Marcellini, P.: Nonconvex integrals of the calculus of variations, Lecture Notes in Math., Vol. 1446, Springer Verlag, Berlin, 1990, pp. 16–57.

    Google Scholar 

  18. Olech, C.: The Lyapounov theorem: its extensions and applications, Lecture Notes in Math., Vol. 1446, Springer Verlag, Berlin, 1990, pp.84–103.

    Google Scholar 

  19. Zolezzi, T.: Wellposed problems of the calculus of variations for non convex integrals, Submitted.

    Google Scholar 

  20. Malanowski, K.: Stability and sensitivity of solutions to nonlinear optimal control problems, to appear in Appl. Math. Optim.

    Google Scholar 

  21. Malanowski, K.: Regularity of solutions in stability analysis of optimization and optimal control problems, Control Cybernet. 23 (1994), 61–86.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zolezzi, T. (1995). Well-Posed Problems in the Calculus of Variations. In: Lucchetti, R., Revalski, J. (eds) Recent Developments in Well-Posed Variational Problems. Mathematics and Its Applications, vol 331. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8472-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8472-2_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4578-2

  • Online ISBN: 978-94-015-8472-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics