Skip to main content

Abstract

Millions of plants are produced every year through micropropagation worldwide. However, these methods are labour intensive and there has to be a good reason for choosing micropropagation. Either the crop is so valuable in itself, or the product from micropropagation is of superior quality and therefore able to obtain a higher price. Or, traditional propagation is so costly, difficult or impossible that micropropagation solves a problem (Hvoslef-Eide 1987; Aitken-Christie 1991). Jones and Sluis (1991) claim that price is the single greatest barrier to true exploitation of mass production opportunities. Automation of somatic embryogenesis/organogenesis in bioreactors has been advanced by several authors, among them Styer (1985), Preil et al. (1988) and Levin et al. (1988), as a possible way of reducing the labour costs of micropropagation. Bioreactors have traditionally been used for bacterial fermentation or for large scale production of secondary metabolites from plant cells. Growing plants cells for production of somatic embryos in bioreactors designed for bacterial growth and production of secondary metabolites is not as straightforward as first thought. Experience from a European collaboration on regeneration from suspension cultures has lead us to believe that the shear forces from fast propellers and foam formation in bubble aerated reactors seem to have caused most trouble.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, I. (1987) Equipments and bioreactors. In: H. Chmiel, W.P. Hammes and J.E. Bailey (eds.), Biochemical Engineering, pp. 342–354. Gustav Fischer, Stuttgart/New York.

    Google Scholar 

  • Aitken-Christie, J. (1991) Automation. In: P.C. Debergh and R.H. Zimmerman (eds.), Micropropagation, pp 363–388. Kluwer Academic Publishers, Dordrecht.

    Chapter  Google Scholar 

  • Anonymous (1983) Industrial platinum resistance thermometer sensors, IEC751. The International Electronic Commission, Geneva, Switzerland.

    Google Scholar 

  • Anonymous (1992) Conducta water analysis, product guide. Endress+Hauser Conducta GmbH, Gerlingen, Germany.

    Google Scholar 

  • Bals, I. and Hale, J.M. (1983) The application of a microprocessor to dissolved oxygen measurement instrumentation. In: E. Gnaiger and H. Forstner (eds.), Polarographic Oxygen Sensors, Aquatic and Physiological Applications, pp. 102–107. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Brown, R.G. and Hwang, P.Y.C. (1992) Introduction to Random Signals and Applied Kaiman Filtering. J. Wiley & Sons, New York, pp. 502.

    Google Scholar 

  • Bühler, H. (1983) A double-membrane sterilizable oxygen sensor. In: E. Gnaiger and H. Forstner (eds.), Polarographic Oxygen Sensors, Aquatic and Physiological Applications, pp. 76–80. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Cammann, K. (1979) Working with Ion-Selective Electrodes. Springer-Verlag, Berlin, pp. 225.

    Book  Google Scholar 

  • Clarke, D.J., Blake-Coleman, B.C., Carr, R.J.G., Calder, M.R. and Atkinson, T. (1986) Monitoring reactor biomass. Trends in Biotechnology 4(7): 173–178.

    Article  CAS  Google Scholar 

  • Clarke, D.J., Blake-Coleman, B.C., Calder, M.R., Carr, R.J.G. and Moody, S.C. (1984) Sensors for bioreactor monitoring and control — a perspective. J. Biotechnol. 1: 135–158.

    Article  CAS  Google Scholar 

  • Connery, J.G., Baxter, R.D. and Gulczynski, C.W. (1992) 1992 Pittsburgh Conference, New Orleans, LA, March 10, Paper #561.

    Google Scholar 

  • Cowgill, U.M. (1988) Sampling waters, the impact of sample variability on planning and confidence levels. In: L.H. Keith (ed.), Principles of Environmental Sampling, p. 173. Am. Chem. Soc., Washington, D.C.

    Google Scholar 

  • Dean, J.A. (1992) Lange’s Handbook of Chemistry. McGraw-Hill, New York, pp. 1387.

    Google Scholar 

  • Dorf, R.C. (1992) Modern Control Systems. Addison Wesley, Reading, Mass., pp. 717.

    Google Scholar 

  • Fatt, I. (1976) The Polarographic Oxygen Sensor, Its Therory of Operation and Its Application in Biology, Medicine, and Technology. CRC Press, Cleveland, Ohio, pp. 278.

    Google Scholar 

  • Forstner, H. (1983) Electronic circuits for Polarographie oxygen sensors. In: E. Gnaiger and H. Forstner (eds.), Polarographicoxygen Sensors, Aquatic and Physiological Applications, pp. 90–101. Springer-Verlag, Berlin.

    Google Scholar 

  • Forstner, H. and Gnaiger, E. (1983) Calculation of equilibrium oxygen concentration. In: E. Gnaiger and H. Forstner (eds.), Polarographic Oxygen Sensors, Aquatic and Physiological Applications, pp. 321–333. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Franklin, G.F., Powell, J.D. and Emami-Naeini, A. (1991) Feedback Control of Dynamic Systems. Addison-Wesley, Reading, Mass., pp. 672.

    Google Scholar 

  • Galster, H. (1991) pH Measurement, Fundamentals, Methods, Applications, Instrumentation. VCH Verlagsgesellshaft mbH, Weinheim, pp. 356.

    Google Scholar 

  • Gelb, A. (ed.) (1974) Applied Optimal Estimation. MIT Press, Cambridge, Mass., pp. 374.

    Google Scholar 

  • Gnaiger, E. (1983) Calculation of p022 in water equilibrated with a mixture of room air and nitrogen. In: E. Gnaiger and H. Forstner (eds.), Polarographic Oxygen Sensors, Aquatic and Physiological Applications, pp. 334–336. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Goodwin, G.C. and Payne, R.L. (1977) Dynamic System Identification, Experiment Design and Data Analysis. Academic Press, New York, pp. 291.

    Google Scholar 

  • Hale, J.M. (1983) Factors influencing the stability of Polarographie oxygen sensors. In: E. Gnaiger and H. Forstner (eds.), Polarographic Oxygen Sensors, Aquatic and Physiological Applications, pp. 3–17. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Heijden, R.T.J.M. van der (1991) State estimation and error diagnosis for biotechnical processes. Ph.D. Thesis, Technische Universiteit Delft, The Netherlands.

    Google Scholar 

  • Heijden, R.T.J.M. van der, Hellinga, C, Luyben, K.C.A.M. and Honderd, G. (1989) State estimators (observers) for the on-line estimation of non-measurable process variables. Trends in Biotechnology 7(8): 205–209.

    Article  Google Scholar 

  • Hitchman, M.L. (1983) Calibration and accuracy of Polarographie oxygen sensors. In: E. Gnaiger and H. Forstner (eds.), Polarographic Oxygen Sensors, Aquatic and Physiological Applications, pp. 18–30. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Hitchman, M.L. and Gnaiger, E. (1983) A thermodynamic consideration of permeability coefficients of membranes. In: E. Gnaiger and H. Forstner (eds.), Polarographic Oxygen Sensors, Aquatic and Physiological Applications, pp. 31–36. Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Hvoslef-Eide, A.K. (1987) Mass propagation in vitro — is this an alternative to traditional propagation? NJF XVIII Congress Árhus, Denmark, 1–3 July, 1987. Nordisk Jordbruksforskning No. 2: 220–221. (In Norwegian)

    Google Scholar 

  • Hvoslef-Eide, A.K. (1990) The effect of irradiance and temperature on in vitro cultures of Nephrolepis exaltata (L.) Schott and Cordyline fruticosa (L.) A. Chev. Gartenbauwissenschaft 55(6): 259–264.

    Google Scholar 

  • Hvoslef-Eide, A.K. and Saebo, A. (1991) The effect of light quality on establishment of suspension cultures. In Vitro Cellular & Dev. Biol. 27(3): 43A, Abstract No 28.

    Google Scholar 

  • Jones, J.B. and Sluis, C.J. (1991) Marketing of micropropagated plants. In: P.C. Debergh and R.H. Zimmerman (eds.), Micropropagation, pp. 141–154. Kluwer Academic Publishers, Dordrecht.

    Chapter  Google Scholar 

  • Kargi, F. and Rosenberg, M.Z. (1987) Plant cell bioreactors: present status and future trends. Biotechnology Progress 3(1): 1–8.

    Article  CAS  Google Scholar 

  • Krizek, D.T. (1982) Guidelines for measuring and reporting environmental conditions in controlled-environment studies. Physiol. Plant. 56: 231–235.

    Article  Google Scholar 

  • Kuhlmann, W. (1987) Optimization of a membrane oxygenation system for cell culture in stirred tank reactors. Develop. Biol. Standard 66: 263–268.

    CAS  Google Scholar 

  • Levin, R., Gaba, V., Tal, B., Hirsch, S., De Nola, D. and Vasil, I.K. (1988) Automated tissue culture for mass propagation. Bio/Technology 6: 1035–1040.

    Article  Google Scholar 

  • Lieneweg, F. (1976) Handbuch der Technischen Temperaturmessung. Friedr. Vieweg & Sohn, Braunsweig, Germany, pp. 482.

    Google Scholar 

  • Ljung, L. (1987) System Identification — Theory for the User. Prentice-Hall, Englewood Cliffs, N.J., pp. 519.

    Google Scholar 

  • Locher, G., Sonnleitner, B. and Fiechter, A. (1991a) Automatic bioprocess control. 2. Implementations and practical experiences. J. Biotechnology 19: 127–144.

    Article  CAS  Google Scholar 

  • Locher, G., Sonnleitner, B. and Fiechter, A. (1991b) Automatic bioprocess control. 3. Impact on process perception. J. Biotechnology 19: 173–192.

    Article  CAS  Google Scholar 

  • McMillan, G.K. (1993) pH measurement: The state of the art. Intech Feb.: 35–39.

    Google Scholar 

  • Meier, P., Lohrum, A. and Gareiss, J. (1989) Practice and Theory of pH Measurement. Ingold Messtechnik AG, Urdorf, Switzerland, pp. 84.

    Google Scholar 

  • Merkl, R. (1984) Semi-continous production of monoclonal antibodies in a fermenter. B. Braun Biotechnol. Rep. 4: 3–6.

    Google Scholar 

  • Morrison, R. (1986) Grounding and Shielding Techniques in Instrumentation. John Wiley & Sons, New York, pp. 172.

    Google Scholar 

  • Nishimura, S., Terashima, T., Higashi, K. and Kamada, H. (1993) Bioreactor culture of somatic embryos for mass propagation of plants. In: K. Redenbaugh (ed.), Synseeds — Applications of Synthetic Seeds to Crop Improvement, pp. 175–181. CRC Press, London/Tokyo.

    Google Scholar 

  • Ott, H.W. (1976) Noise Reduction Techniques in Electronic Systems. John Wiley & Sons, New York, pp. 294.

    Google Scholar 

  • Phillips, C.L. and Harbor, R.D. (1991) Feedback Control Systems. Prentice-Hall Int., Englewood Cliffs, NJ, pp. 664.

    Google Scholar 

  • Preil, W., Florek, P., Wix, U. and Beck, A. (1988) Towards mass propagation by use of bioreactors. Acta Hort. 226: 99–105.

    Google Scholar 

  • Preil, W. (1991a) Application of bioreactors in plant propagation. In: P.C. Debergh and R.H. Zimmerman (eds.), Micropropagation, pp. 425–445. Kluwer Academic Publishers, Dordrecht.

    Chapter  Google Scholar 

  • Preil, W. (1991b) Somatic embryogenesis in bioreactor culture. Acta Horticulturae 289: 179–192.

    Google Scholar 

  • Schindler, W. (1976) Steriliserbare Glaselektrodenmeßketten zur pH-kontrolle von Fermentations-prozessen. Chem. Techn. (Leipzig) 28: 223–228.

    CAS  Google Scholar 

  • Slotine, J.J.E. and Li, W. (1991) Applied Nonlinear Control. Prentice Hall, Englewood-Cliffs, NJ, pp. 459.

    Google Scholar 

  • Sonnleitner, B., Locher, G. and Fiechter, A. (1991) Automatic bioprocess control: 1. A general concept. J. Biotechnol. 19: 1–18.

    Article  PubMed  CAS  Google Scholar 

  • Styer, D.J. (1985) Bioreactor technology for plant propagation. In: R.R. Henke, K.W. Hughes, M.J. Constantin and A. Hollaender (eds.), Tissue Culture in Forestry and Agriculture, pp. 117–130. Plemun Press, New York/London.

    Chapter  Google Scholar 

  • Wang, N.S. and Stephanopoulos, G. (1983) Application of macroscopic balances to the identification of gross measurement errors, Biotechnology and Bioengineering 15: 2177–2208.

    Article  Google Scholar 

  • Williams, T. (1992) EMC for Product Designers. Butterworth-Heineman Newnes, Oxford, pp. 255.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Heyerdahl, P.H., Olsen, O.A.S., Hvoslef-Eide, A.K. (1995). Engineering aspects of plant propagation in bioreactors. In: Aitken-Christie, J., Kozai, T., Smith, M.A.L. (eds) Automation and environmental control in plant tissue culture. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8461-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8461-6_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4405-1

  • Online ISBN: 978-94-015-8461-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics