Skip to main content

Abstract

Micropropagation is firmly established as a global technology for plant production systems and is widely used in teaching and research as well as, on the larger scale, for commercial production. It is extremely labour-intensive for a modern technology, as the interval between subcultures may range, typically, from 14 to 35 days. This creates a high, continual demand for skilled labour, media, culture vessels and space in the specialised environmental conditions required for optimal growth. In any micropropagation facility, whatever its size, there will be a high proportion of material being held for some future use, and which is not part of a current multiplication or experimental programme. Consequently, there will be significant logistic and resource benefits in employing a storage system for this material, to extend significantly the intervals between subculture and other handling. Resource savings will also be made if the storage system can operate at lower temperatures and light levels than those required for optimal growth. Programmed use of such a storage system would also allow greater control of production schedules for micropropagated material, with efficient stockpiling of multiplying cultures or plantlets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aitken-Christie, J. and Singh, A.P. (1987) cold storgae of tissue cultures. In: J.M. Bonga and D.J. Durzan (eds.), Cell and Tissue Culture in Forestry, Volume 2, pp. 285–304. Martinus Nijhoff Publishers, Dordrecht.

    Google Scholar 

  • Alan, J.J. (1979) Tissue culture storage of sweet potato germplasm. Ph.D. Thesis, University of Birmingham, UK.

    Google Scholar 

  • Ammirato, P.V. (1983) Embryogenesis. In: D.A. Evans, W.R. Sharp, P.V. Ammirato and Y. Yamada (eds.), Handbook of Plant Cell Culture. Volume 1: Techniques for Propagation and Breeding, pp. 82–123. Macmillan, New York.

    Google Scholar 

  • Angell, C.A. and Sanapti, H. (1987) Crystallisation and vitrification in cryoprotected aqueous systems. In: D.E. Pegg and A.M. Karow (eds.), The Biophysics of Organ Cryopreservation, pp. 147–171. Plenum Press, New York.

    Google Scholar 

  • Arora, R. and Bhojwani, S.S. (1989) In vitro propagation and low temperature storage of Sassurea lappus C.B. Clarke — an endangered medical plant. Plant Cell Reports 8: 44–47.

    Google Scholar 

  • Asahina, E. (1962) Frost injury in living cells. Nature 196: 445–456.

    Google Scholar 

  • Ashwood-Smith, M. and Grant, E. (1977) Genetic stability in cellular systems stored in the frozen state. In: K. Elliot and J. Whelan (eds.), The Freezing of Mammalian Embryos, pp. 251–286. Elsevier, Amsterdam.

    Google Scholar 

  • Bajaj, Y.P.S. (1979) Freeze preservation of meristems of Arachis hypogea and Cicer arietinum. Ind. J. Exp. Biol. 17: 1407–1409.

    Google Scholar 

  • Bajaj, Y.P.S. (1981) Regeneration of plants from potato meristems freeze-preserved for 24 months. Euphytica 30: 141–145.

    Google Scholar 

  • Bajaj, Y.P.S. (1983) Cassava plants from meristem cultures freeze-preserved for three years. Field Crops Res. 7: 161–167.

    Google Scholar 

  • Bajaj, Y.P.S. (1984) The regeneration of plants from frozen pollen embryos and zygotic embryos of wheat and rice. Theor. Appl. Genet. 67: 525–528.

    Google Scholar 

  • Bajaj, Y.P.S. (1990) Cryopreservation of germplasm of vegetatively propagated crops. Bull. Soc. Bot. Fr. Actual. Bot. 137: 99–114.

    Google Scholar 

  • Banerjee, N. and DeLanghe, E. (1985) A tissue culture technique for rapid clonal propagation and storage under minimal growth conditions of Musa (banana and plantain). Plant Cell Reports 4: 351–354.

    CAS  Google Scholar 

  • Barlass, M. and Skeene, K.G.M. (1983) Long term storage of grape in vitro. Plant Genetic Resources Newsletter 53: 19–21.

    Google Scholar 

  • Benson, E.E. (1990) Free Radical Damage in Stored Plant Germplasm. IBPGR, Rome.

    Google Scholar 

  • Benson, E.E. and Withers, L.A.W. (1987) Gas chromatographic analysis of volatile hydrocarbon production by cryopreserved plant tissue cultures: a non-destructive method for assessing stability. Cryoletters 8: 35–46.

    CAS  Google Scholar 

  • Benson, E.E. and Noronha-Dutra, A.A. (1988) Chemiluminescence in cryopreserved plant tissue cultures: the possible involvement of singlet oxygen in cryoinjury. Cryoletters 9: 120–131.

    CAS  Google Scholar 

  • Benson, E.E., Harding, K. and Smith, H. (1989) The effects of pre- and post-freeze light on the recovery of cryopreserved shoot-tips of Solanum tuberosum. Cryoletters 10: 323–344.

    Google Scholar 

  • Benson, E.E. and Hamill, J.D. (1991) Cryopreservation and post-freeze molecular and biosynthetic stability in transformed roots of Beta vulgaris and Nicotiana rustica. Plant Cell Tissue Organ Culture 24: 163–172.

    CAS  Google Scholar 

  • Bertrand-Desbrunais, A., Noirot, M. and Charrier, A. (1992) Slow growth in vitro conservation of coffee (Coffea sp.) 2. Influence of reduced concentration of sucrose and low temperature. Plant Cell Tissue Organ Culture 31: 105–110.

    CAS  Google Scholar 

  • Bessembinder, J.J.E., Staritsky, G. and Zandvoort, E.A. (1993) Long-term in vitro storage of Colocasia esculentum under minimal growth conditions. Plant Cell Tissue Organ Culture 32: 121–127.

    Google Scholar 

  • Bhojwani, S. S. (1981) A tissue culture method for propagation and low temperature storage of Trifolium repens genotypes. Physiol. Plant 52: 187–190.

    CAS  Google Scholar 

  • Boutron, P. (1987) Non-equilibrium formation of ice in aqueous solutions: efficiency of polyalcohol solutions for vitrification. In: D.E. Pegg and A.M. Karow (eds.), The Biophysics of Organ Cryopreservation, pp. 201–236. Plenum Press, New York.

    Google Scholar 

  • Braun, A. (1988) Cryopreservation of sugar beet germplasm. Plant Cell Tissue Organ Culture 14: 161–168.

    Google Scholar 

  • Brison, M., Paulus, V., deBoucard, M.T. and Dosba, F. (1992) Cryopreservation of walnut & plum shoot tips. Cryobiology 29: 738.

    Google Scholar 

  • Cheyne, V.A. and Dale, P.J. (1980) Shoot tip culture in forage legumes. Plant Sci. Lett. 19: 303–309.

    CAS  Google Scholar 

  • Chun, Y.W. and Hall, R.B. (1986) Low temperature storage of in vitro cultured hybrid poplar, Populus alba x P. grandidentata plantlets. Abstracts of the VIth Int. Congress of Plant Tissue and Cell Culture, p. 13, University of Minnesota, Minneapolis.

    Google Scholar 

  • Dale, P.J. (1980) A method for in vitro storage of Lollium multiflorum Lam. Ann. Bot. 45: 497–502.

    Google Scholar 

  • Dale, P.J., Cheyne, V.A. and Dalton, S.J. (1980) Pathogen elimination and in vitro plant storage in forage grasses and legumes. In: D.S. Ingram and J.P. Hegelson (eds.), Tissue Culture Methods for Plant Pathologists, pp. 119–124. Blackwell, Oxford.

    Google Scholar 

  • DeBergh, P., Aitken-Christie, J., Cohen, D., Grout, B., Von Arnold, S., Zimmerman, R. and Ziv, M. (1992) Reconsideration of the term “vitrification” as used in micropropagation. Plant Cell Tissue Organ Culture 30: 135–140.

    Google Scholar 

  • Demeulemeester, M.A.C., Vandenbussche, B. and DeProft, M.P. (1993) Regeneration of chicory plants from cryopreserved in vitro shoot tips. Cryoletters 14: 57–64.

    Google Scholar 

  • Dereuddre, J., Fabre, J. and Bassaglia, C. (1987) Resistance to freezing in liquid nitrogen of carnation (Dianthus caryophyllus L. var Eolo) apical and axillary shoot tips excised from different-aged in vitro plants. Plant Cell Reports 7: 170–173.

    Google Scholar 

  • Dereuddre, J., Blandin, S. and Hassen, N. (1991) Resistance of alginate-coated somatic embryos of carrot (Daucus carota) to desiccation and freezing in liquid nitrogen. 1. Effects of preculture. Cryoletters 12: 125–134.

    Google Scholar 

  • Dodds, J. (1991) In Vitro Methods for Conservation of Plant Genetic Resources. Chapman & Hall, London, 247 pp.

    Google Scholar 

  • Dore, C. (1988) Multiplication vegetative et conservation in vitro chez le poireau (Allium porrum L.). Agronomie (Paris) 8: 509–511.

    Google Scholar 

  • El-Gizawy, A.M. and Ford Lloyd, B.V. (1987) An in vitro method for the conservation and storage of garlic (Allium sativa) germplasm. Plant Cell Tissue Organ Culture 9: 147–150.

    Google Scholar 

  • Engelmann, F. (1990) Cryoconservation des embryos somatique de palmier a huile: Bilon et perspectives. Bull. Soc. Bot. Fr. Actual. Bot. 137: 93–98.

    Google Scholar 

  • Espinoza, N., Estrada, R., Tovar, P., Bryan, J. and Dodds, J.H. (1984) Tissue culture micropropagation, conservation and export of potato germplasm. Specialised Technology Document 1, CIP, Lima.

    Google Scholar 

  • Fabre, J. and Dereuddre, J. (1990) Encapsulation-dehydration: a new approach to cryopreservation of Solanum shoot tips. Cryoletters 11: 413–426.

    Google Scholar 

  • Fahy, G.M., McFarlane, D.R., Angell, C.A. and Meryman, H.T. (1984) Vitrification as an approach to cryopreservation. Cryobiology 21: 407–426.

    PubMed  CAS  Google Scholar 

  • Fahy, G.M. (1987) Biological effects of vitrification and devitrification. In: D.E. Pegg and A.M. Karow (eds.), The Biophysics of Organ Cryopreservation, pp. 265–300). Plenum Press, New York.

    Google Scholar 

  • Fay, M, (1994) In what situations is in vitro culture appropriate to plant conservation. Biodiversity and Conservation 3: 176–183.

    Google Scholar 

  • Find, J.I., Floto, F., Krogstrup, P., Moller, J.D., Norgaard, J.V. and Kristensen, M.M.H. (1993) Cryoprreservation of an embryogenic suspension of Picea sitchensis and subsequent plant regeneration. Scand. J. For. Res. 8: 156–162.

    Google Scholar 

  • Franks, F. (1985) Biophysics and Biochemistry at Low Temperatures. Cambridge Univ. Press, Cambridge, 20 pp.

    Google Scholar 

  • Fukai, S., Goi, M. and Tanaka, M. (1991) Cryopreservation of shoot tips of Chrysanthemum morifolium and related species native to Japan. Euphytica 54: 201–204.

    Google Scholar 

  • Galzy, R. (1969) Recherches sur la croissional de Vitis rupestris Scheele sain et court noue cultive invitro a differentes temperatures. Ann. Physiopathol. 1: 149–166.

    Google Scholar 

  • Grout, B.W.W. (1990a) In vitro conservation of germpasm. In: S.S. Bhojwani (ed.), Plant tissue Culture: Applications and Limitations, pp. 394–411. Elsevier, Amsterdam.

    Google Scholar 

  • Grout, B.W.W. (1990b) Genetic preservation in vitro. In: H.J.J. Nijkamp, L.H.W. Van der Plas and J. van Aartrijk (eds.), Plant Cellular and Molecular Biology, pp. 13–22. Kluwer Academic Publishers, Dordrecht.

    Google Scholar 

  • Grout, B.W.W. (1991a) Conservation In Vitro. Acta Horticulturae 289: 171–178.

    Google Scholar 

  • Grout, B.W.W. (1991b) The effects of ice during the cryopreservation of clinical systems. In: B.J. Fuller and B.W.W. Grout (eds.), Clinical Applications of Cryobiology, pp. 81–94). CRC Press, Boca Raton.

    Google Scholar 

  • Grout, B.W.W. (1991c) Cryopreservation of plant cells and organs. In: A.H. Zakri, M.T. Normah, M.T. Senawi and A.G. Abdul Karim (eds.), Conservation of Plant Genetic Resources Through In Vitro Methods, pp. 43–55. FRIM/MNCPGR, Kuala Lumpur.

    Google Scholar 

  • Grout, B.W.W. and Henshaw, G.G. (1978) Freeze-preservation of potato shoot tip cultures. Ann. Bot. 42: 1227–1229.

    Google Scholar 

  • Grout, B.W.W. and Morris, G.J. (1987) Freezing and cellular organisation. In: B.W.W. Grout and G.J. Morris (eds.), The Effects of Low Temperatures on Biological Systems, pp. 147–174. Edward Arnold, London.

    Google Scholar 

  • Harding, K. (1991) Molecular stabiltiy of the ribosomal RNA genes in Solanum tuberosum plants recovered from slow growth and cryopreservation. Euphytica 55: 141–146.

    CAS  Google Scholar 

  • Hobbs, P.V. (1974) Ice Physics. Oxford Univ. Press, Oxford, 837 pp.

    Google Scholar 

  • Hunter, C.S. (1986) In vitro propagation and germplasm storage of Cinchona. In: L.A. Withers and P.G. Alderson (eds.), Plant Tissue Culture and its Agricultural Applications, pp. 291–301. Butterworths, London.

    Google Scholar 

  • Hussey, G. and Hepher, A. (1978) Clonal propagation of sugar beet plants and the formation of polyploids by tissue culture. Ann. Bot. 42: 477–479.

    Google Scholar 

  • Karp, A. (1989) Can genetic instabilty be controlled in plant tissue cultures? Int. Assoc. Plant Tissue Culture Newsletter 58: 2–11.

    Google Scholar 

  • Karp, A. and Bright, W.J.S. (1985) On the causes and origins of somaclonal variation. In: B.J. Miflin (ed.), Oxford Surveys of Plant Molecular and Cell Biology, Volume 2, pp. 199–234. Oxford Univ. Press, Oxford.

    Google Scholar 

  • Kartha, K.K. (1985) Cryopreservation of Plant Cells and Organs, CRC Press, Boca Raton, FL, 276 pp.

    Google Scholar 

  • Kartha, K.K. (1987) Advance in cryopreservation technology of plant cells and organs. In: C. E. Green, D.A. Somers, W.P. Hackett and D.D. Bisboer (eds.), Plant Tissue and Cell Culture, pp. 447–458. Alan R. Liss, New York.

    Google Scholar 

  • Kartha, K.K., Leung, N.L. and Mroginski, L.A. (1982) In vitro growth responses and plant regeneration from cryopreserved meristems of cassava (Manihot esculenta Crantz.). Zeitschrift fur Pflanzenphysiol. 107P: 133–140.

    Google Scholar 

  • Kartha, K.K., Leung, N.L. and Pahl, K. (1980) Cryopreservation of strawberry meristems and mass propagation of plantlets. J. Am. Soc. Hort. Sci. 105: 481–484.

    CAS  Google Scholar 

  • Korber, C., Scheiwe, M.W., Boutron, P. and Rau, G. (1982) The influence of hydroxyethyl starch on ice formation in aqueous solutions. Cryobiology 19: 478–492.

    Google Scholar 

  • Koster, K.L., Steponkus, P. L. and Lynch, V. (1989) Solute accumulation during cold acclimation of rye. Plant Physiology 89: S-26.

    Google Scholar 

  • Kuosoka, T. and Hohtola, A. (1991) Freeze preservation of buds from Scots Pine trees. Plant Cell Tissue Organ Culture 27: 89–93.

    Google Scholar 

  • Langis, R., Schnabel-Preikstas, B.J., Earle, E.D. and Steponkus, P.L. (1990) Cryopreservation of carnation shoot tips by vitrification. Cryobiology 27: 657–658.

    Google Scholar 

  • Larkin, P.J. (1987) Somaclonal variation; history, method and meaning. Iowa State J. Res. 61: 393–434.

    Google Scholar 

  • Lundergen, C. and Janick, J. (1979) Low temperature storage of in vitro apple shoots. HortScience 14: 514.

    Google Scholar 

  • Lyons, J.M., Raison, J.K. and Steponkus, P.L. (1979) The plant membrane in response to low temperature: an overview. In: J.M. Lyons, D. Graham and J.K. Raison (eds.), Low Temperature Stress in Crop Plants — The Role of the Membrane, pp. 1–24. Academic Press, London.

    Google Scholar 

  • Marin, M.L. and Duran-Vila, N. (1988) Survival of somatic embryos and recovery of plants of sweet orange (Citrus sinensis L. Osb.) after immersion in liquid nitrogen. Plant Cell Tissue Organ Culture 5: 73–76.

    Google Scholar 

  • Mascarenhas, A.F. and Agrawal, D.C. (1991) Prospects for in vitro conservation of tree germplasm. In: A.H. Zakri, M.T. Normah, M.T. Senawi and A.G. Abdul Karim (eds.), Conservation of Plant Genetic Resources Through In Vitro Methods, pp. 231–252. FRIM/MNCPGR, Kuala Lumpur.

    Google Scholar 

  • Mazur, P. (1977) The role of intracellular freezing in the death of cells cooled at supra-optimal rates. Cryobiology 14: 251–272.

    PubMed  CAS  Google Scholar 

  • McFarlane, D.R. and Forsyth, M. (1987) Devitrification and recrystallisation of glass-forming aqueous solutions. In: D.E. Pegg and A.M. Karow (eds.), The Biophysics of Organ Cryopreservation, pp. 237–263. Plenum Press, New York.

    Google Scholar 

  • Meryman, H.T. and Williams, R.J. (1985) Basic principles of freezing injury to plant cells: In: K.K. Kartha (ed.), Cryopreservation of Plant Cells and Organs, pp. 13–48. CRC Press, Boca Raton, FL.

    Google Scholar 

  • Monette, P.L. (1986) Cold storage of kiwi fruit shoot tips in vitro. HortScience 11: 1203–1205.

    Google Scholar 

  • Monod, V., Poissonier, M., Paques, M. and Dereuddre, J. (1992) Cryopreservation of shoot tips of in vitro plantlets of Euclyptus after encapsulation and air dehydration. Cryobiology 29: 737–738.

    Google Scholar 

  • Moriguchi, T., Akihama, T. and Kozai, I. (1985) Freeze preservation of dormant pear shoot apices. Japan J. Breed. 35: 196–199.

    CAS  Google Scholar 

  • Morris, G.J. and Grout, B.W.W. (1990) Technological synthesis. Phil. Trans. Roy. Soc. Lond. B 326: 687–692.

    Google Scholar 

  • Morris, G.J. and McGrath, J.J. (1981) Intracellular ice nucleation and gas bubble formation in Spirogyra. Cryoletters 2: 341–352.

    Google Scholar 

  • Mullin, R.H. and Schlegel, D.E. (1976) Cold storage maintenance of strawberry meristem plantlets. HortScience 11: 100–101.

    Google Scholar 

  • Niino, T., Sajkai, A., Yakuwa, H. and Nojiri, K. (1992) Cryopreservation of in vitro grown shoot tips of apple and pear by vitrification. Plant Cell Tissue Organ Culture 28: 261–266.

    Google Scholar 

  • Ng, S.Y.C. and Hahn, S.K. (1985) Application of tissue culture to tuber croops at IITA. In: Anon (ed.) Proceedings of the Inter-Centre Seminar on International Agricultural Research Centers and Biotechnology, pp. 27–40. IRRI, Philippines.

    Google Scholar 

  • Ng, S.Y.C. and Ng, N.Q. (1991) Reduced-growth storage of germplasm. In: J. Dodds (ed.), In Vitro Methods for Conservation of Plant Genetic Resources, pp. 11–39. Chapman & Hall, London.

    Google Scholar 

  • Oka, S., Yakuwa, H., Sato, K. and Niino, T. (1991) Survival and shoot formation in vitro of pear winter buds cryopreserved in liquid nitrogen. HortScience 26: 65.

    Google Scholar 

  • Orlikowska, T. (1992) The effects of in vitro storage at 4 °C on survival and proliferation of two apple rootstocks. Plant Cell Tissue Organ Culture 31: 1–7.

    Google Scholar 

  • Plessis, P., Leddet, C. and Dereuddre, J. (1991) Resistance to dehydration and to freezing in liquid nitrogen of alginate coated shoot tips of grape vine (Vitis vinifera L.) C.R. Acad. Sci. Ser. III Sci. Vie 313: 373–380.

    CAS  Google Scholar 

  • Potter, R.H. and Jones, M.G.K. (1991) Molecular analysis of genetic stability. In: J. Dodds (ed.), In Vitro Methods for Conservation of Plant Genetic Resources, pp. 79–91. Chapman & Hall, London.

    Google Scholar 

  • Preil, W. and Beck, A. (1991) Somatic embryogenesis in bioreactor culture. Acta Horticulturae 289: 179–192.

    Google Scholar 

  • Pritchard, H.W., Grout, B.W.W. and Short, K.C. (1986) Osmotic stress as a pregrowth procedure for cryopreservation 1. growth and ultrastructure of sycamore and soybean cell suspensions. Ann. Bot. 57: 41–48.

    Google Scholar 

  • Rall, W.F., Reid, D.S. and Farrant, J. (1980) Innocuous biological freezing during warming. Nature 286: 511–514.

    PubMed  CAS  Google Scholar 

  • Reed, B.M. (1989) The effect of cold hardening and cooling rate on the survival of apical meristems of Vaccinium species frozen in liquid nitrogen. Cryoletters 110: 315–322.

    Google Scholar 

  • Reed, B.M. (1991) Application of gas-permeable bags for in vitro cold storage of strawberry germplasm. Plant Cell Reports 10: 431–434.

    Google Scholar 

  • Reed, B.M. (1993) Responses to ABA and cold acclimation are genotype dependent for cryopreserved blackberry and raspberry meristems. Cryobiology 30: 179–184.

    Google Scholar 

  • Roberts, S., Grout, B.W.W. and Morris, G.J. (1987) Consecutive observations of a frozen cell sample by cryogenic light miccroscopy and cryogenic scanning electron microscopy. Cryoletters 8: 122–129.

    Google Scholar 

  • Sakai, A., Kobayashi, S. and Oiyama, I. (1990) Survival by vitrification of nucellar cells of navel orange (Citrus sinensis varbrasiliensis Tanaka) cooled to — 196°C. J. Plant Physiol. 137: 465–470.

    Google Scholar 

  • Sakai, A., Niino, T., Yamada, T. and Kohmura, H. (1992) Cryopreservation by vitrification of mulbery meristems, meristematic callus of white clover and multiple bud cultures of asparagus. Cryobiology 29: 747–748.

    Google Scholar 

  • Schnabel-Preikstas, B., Earle, E. D. and Steponkus, P. L. (1992a) Cryopreservation of Chrysanthemum shoot tips by vitrification. Cryobiology 29: 739.

    Google Scholar 

  • Schnabel-Preikstas, B., Earle, E.D. and Steponkus, P.L. (1992b) Cryopreservation of potato shoot tips by vitrification. Cryobiology 29: 747.

    Google Scholar 

  • Scottez, C., Chevreau, E., Godard, N., Arnaud, Y., Duron, M. and Dereuddre, J. (1992) Cryopreservation of cold acclimated shoot tips of pear in vitro after encapsulation and dehydration. Cryobiology 29: 691–700.

    Google Scholar 

  • Scowcroft, W.R. (1984) Genetic Variability in Tissue Culture: Impact on Germplasm Conservation and Utilisation. IBPGR, Rome, 41 pp.

    Google Scholar 

  • Shimonishi, K., Ishikawa, M., Suzuki, S. and Oosawa, K. (1991) Cryopreservation of melon somatic embryos by a desiccation method. Japanese J. Breed. 41: 347–351.

    Google Scholar 

  • Son, S.A., Chun, Y.W. and Hall, R.B. (1991) Cold storage of in vitro cultures of hybrid poplar shoots (Populus alba x P. grandidentata Michx). Plant Cell Tissue Organ Culture 27: 161–168.

    Google Scholar 

  • Staritsky, G. (1980) In vitro storage of aroid germplasm. Plant Genetic Resources Newsletter 42: 25–27.

    Google Scholar 

  • Staritsky, G. (1986) In vitro conservation of aroid germplasm at reduced temperatures and under osmotic stress. In: L.A. Withers and P.G. Alderson (eds.), Plant Tissue Culture and its Agricultural Applications, pp. 277–284. Butterworths, London.

    Google Scholar 

  • Steponkus, P.L. (1984) The role of the membrane in freezing injury and cold acclimation. Ann. Rev. Plant Physiol. 35: 543–584.

    CAS  Google Scholar 

  • Steponkus, P.L., Stout, D.G., Wolfe, J. and Lovelace, R.V.E. (1984) Freeze-induced electrical transients and cryoinjury. Cryoletters 5: 343–348.

    CAS  Google Scholar 

  • Sugawara, Y. and Steponkus, P. L. (1990) Effect of cold acclimation and modification of the plasma membrane lipid composition on lamellar to hexagonal phase transitions in rye protoplasts. Cryobiology 27: 667.

    Google Scholar 

  • Taniguchi, K., Tanaka, R., Ashitani, N. and Miyagawa, H. (1988) Freeze preservation of tissue cultured shoot primordia of the annual Haplopappus gracilis. Japanese J. Genet. 63: 267–272.

    Google Scholar 

  • Tandorf, S., McGrath, J.J. and Olien, C.R. (1987) On the adhesive interaction between ice and cell-size liposomes. Cryoletters 8: 322–326.

    Google Scholar 

  • Tannoury, M., Ralambosoa, J., Kaminski, M. and Dereuddre, J. (1991) Cryopreservation by vitrification of alginate coated carnation shoot tips of in vitro plantlets. C.R. Acad. Sci. Ser. III Scie. Vie. 313: 63 3–63 8.

    Google Scholar 

  • Taylor, M.J. (1987) Physico-chemical principles in low temperature biology. In: B.W.W. Grout and G.J. Morris (eds.), The Effects of Low Temperatures on Biological Systems, pp. 3–71. Edward Arnold, London.

    Google Scholar 

  • Terzi, M. and Loschiavo, F. (1990) Somatic embryogenesis. In: S.S. Bhojwani (ed.), Plant Tissue Culture: Applications and Limitations, pp. 54–66. Elsevier, Amsterdam.

    Google Scholar 

  • Towill, L.E. (1988) Survival of shoot tips from mint species after short-term exposure to cryogenic conditions. HortScience 23: 839–841.

    Google Scholar 

  • Towill, L.E. (1990) Cryopreservation of isolated mint shoot tips by vitrification. Plant Cell Reports 9: 178–180.

    Google Scholar 

  • Towill, L.E. (1994) Cryopreservation by vitrification. In: B.W.W. Grout (ed.), Genetic Conservation of Plant Cells and Tissues In Vitro. Springer Verlag, Heidelberg (in press).

    Google Scholar 

  • Uragami, A., Sakai, A., Nagai, M. and Takahashi, T.A. (1989) Survival of cultured cells and somatic embryos of Asparagus officinalis cryopreserved by vitrification. Plant Cell Reports 8: 418–421.

    Google Scholar 

  • Uragami, A., Sakai, A. and Nagai, M. (1990) Cryopreservation of dried axillary buds from plantlets of Asparagus officinalis grown in vitro. Plant Cell Reports 9: 328–331.

    Google Scholar 

  • Uragami, A., Lucas, M.O., Ralambosoa, A.J., Renard, M. and Dereuddre, J. (1993) Cryopreservation of microspore embryos of rapeseed (Brassica napus) by dehydration in air with or without alginate encapsulation. Cryoletters 14: 83–91.

    Google Scholar 

  • Wanas, W.H., Callow, J.A. and Withers, L.A. (1986) Growth limitation for the conservation of pear genotypes. In: L.A. Withers and P.G. Alderson (eds.), Plant Tissue Culture and its Agricultural Applications, pp. 285–290. Butterworths, London.

    Google Scholar 

  • Ward, A.C.W., Benson, E.E., Blackhall, N.W., Cooper-Bland, S., Powell, W., Power, J.B. and Davey, M.R. (1993) Flow-cytometric assessments of ploidy stability in cryopreserved dihaploid Solanum tuberosum and wild Solanum species. Cryoletters 14: 145–153.

    Google Scholar 

  • Webb, M. S. and Steponkus, P. L. (1990) Dehydration-induced hexagonal phase formation in phospholipid bilayers. Cryobiology 27: 666–667.

    Google Scholar 

  • Westcott, R.J., Henshaw, G.G., Grout, B.W.W. and Roca, W.M. (1977) Tissue culture methods and germplasm storage in potato. Acta Hort. 78: 45–49.

    Google Scholar 

  • Westcott, R.J. (1981a) Tissue culture storage of potato germplasm. 1. Minimal growth storage. Potato Research 24: 331–342.

    Google Scholar 

  • Westcott, R.J. (1981b) Tissue culture storage of potato germplasm. 2. Use of growth retardants. Potato Research 24: 343–352.

    CAS  Google Scholar 

  • Wilson, J. (1987) Chilling injury in plants. In: B.W.W. Grout and G.J. Morris (eds.), The Effects of Low Temperatures on Biological Systems, pp. 271–292. Edward Arnold, London.

    Google Scholar 

  • Withers, L.A. (1979) Freeze preservation of somatic embryos and clonal plantlets of carrot. Plant Physiol. 63: 460–467.

    PubMed  CAS  Google Scholar 

  • Withers, L.A. (1982a) Storage of Plant Tissue Cultures. In: L.A. Withers and J.T. Williams (eds.), Crop Genetic Resources — The Conservation of Difficult Material, pp. 49–82. IBPGR, Rome.

    Google Scholar 

  • Withers, L.A. (1982b) The development of cryopreservation techniques for plant cell, tisuse and organ cultures. In: A. Fujiwara (ed.), Plant Tissue Culture 1982, pp. 793–794. Japanese Assoc. for Tissue Culture, Tokyo.

    Google Scholar 

  • Withers, L.A. (1985) Cryopreservation and storage of germplasm. In: R.A. Dixon (ed.), Plant Cell Culture — A Practical Approach, pp. 169–192. IRL Press, Oxford.

    Google Scholar 

  • Withers, L.A. (1986) In vitro approaches to the conservation of plant genetic resources. In: L.A. Withers and P.G. Alderson (eds.), Plant Tissue Culture and its Agricultural Applications, pp. 261–276. Butterworths, London.

    Google Scholar 

  • Withers, L.A. (1987) The low temperature preservation of plant cell, tissue and organ cultures and seed for genetic conservation and improved agricultural practices. In: B.W.W. Grout and G.J. Morris (eds.), The Effects of Low Temperatures on Biological Systems, pp. 389–409. Edward Arnold, London.

    Google Scholar 

  • Withers, L.A. (1991) Tissue culture and the conservation of plant genetic resources. In: A.H. Zakri, M.T. Normah, M.T. Senawi and A.G. Abdul Karim (eds.), Conservation of Plant Genetic Resources Through In Vitro Methods, pp. 1–18. FRIM/MNCPGR, Kuala Lumpur.

    Google Scholar 

  • Yakuma, H. and Oka, S. (1988) Plant regeneration through meristem culture from vegetative buds of mulberry (Morus bombycis Koidz.) stored in liquid nitrogen. Ann. Bot. 62: 79–82.

    Google Scholar 

  • Yamada, T., Sakai, A., Matsumura, T. and Higuchi, S. (1991a) Cryopreservation of apical meristems of white clover (Trifolium repens L.) by vitrification. Plant Science 78: 81–87.

    CAS  Google Scholar 

  • Yamada, T., Sakai, A., Matsumura, T. and Higuchi, S. (1991a) Cryopreservation of apical meristems of white clover (Trifolium repens L.). Plant Science 73: 111–116.

    Google Scholar 

  • Zandvoort, E.A. and Staritsky, G. (1986) In vitro gene banks of tropical aroids — research of storage conditions. Abstracts of the VI International Congress of Plant Tissue and Cell Culture, p. 426. University of Minnesota, Minneapolis.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Grout, B.W.W. (1995). Low temperature storage of plant tissue cultures. In: Aitken-Christie, J., Kozai, T., Smith, M.A.L. (eds) Automation and environmental control in plant tissue culture. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8461-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8461-6_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4405-1

  • Online ISBN: 978-94-015-8461-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics