Dynamics of Ordinary Differential Equations

Part of the NATO ASI Series book series (ASIC, volume 464)


We use two examples, the Lorenz equations and the Falkner-Skan equation, to illustrate the type of results that can be obtained for ordinary differential equations; our understanding of the behaviour over a range of parameter values is built up by combining classical results, results from local and global bifurcation theory, and numerical experiments. In particular, combinatorial schemes for accounting for all periodic orbits and bifurcations in the system may be a powerful tool.

Key words

Lorenz Falkner-Skan homoclinic bifurcation periodic orbit orbit following continuation ordinary differential equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Asimov D. & Franks J., 1983. Unremovable closed orbits. InGeometric Dynamics, Springer Lect. Notes1007:22–29. Revised version in preprint.Google Scholar
  2. Botta E. F. F., Hut F. J. & Veldman A. E. P., 1986. The rôle of periodic solutions in the Falkner-Skan problem for A 0. J.Eng. Math.,20: 81–93.MathSciNetzbMATHCrossRefGoogle Scholar
  3. Boyland P., 1993. Isotopy Stability of Dynamics on Surfaces. Preprint.Google Scholar
  4. Coppel W. A., 1960. On a differential equation of boundary layer theory.Philos. Trans.Roy. Soc. London Ser. A253: 101–136.MathSciNetzbMATHCrossRefGoogle Scholar
  5. Dawson S. P., Grebogi C., Yorke J., Kan I. & Koçak H., 1992. Antimonotonicity: inevitable reversals of period-doubling cascades.Phys. Lett. A162: 249–254.MathSciNetCrossRefGoogle Scholar
  6. Doedel E., 1986. AUTO:Software for continuation and bifurcation problems in ordinary differential equations. C.I.T. Press, Pasadena.Google Scholar
  7. Falkner V. M. & Skan S. W., 1931. Solutions of the boundary layer equations.Phil. Mag.,7(12): 865–896.Google Scholar
  8. Glendinning P., 1989. Global structure of homoclinic bifurcations: a combinatorial approach.Phys. Lett. A.,141: 391–396.MathSciNetCrossRefGoogle Scholar
  9. Glendinning P., 1988. Global bifurcations in flows. InNew Directions in Dynamical Systems, eds Bedford T. and Swift J. London Math. Soc. Lect. Note Ser. 127, C.U.P.Google Scholar
  10. Glendinning P. & Sparrow C., 1984. Local and global behaviour near homoclinic orbits.J. Stat. Phys.,35: 645–697.MathSciNetzbMATHCrossRefGoogle Scholar
  11. Glendinning P. & Sparrow C., 1986. T-points: A codimension 2 heteroclinic bifurcation.J. Stat. Phys.,43: 479–488.MathSciNetzbMATHCrossRefGoogle Scholar
  12. Glendinning P. & Sparrow C., 1993. Prime and renormalisable kneading invariants and the dynamics of expanding Lorenz maps.Physica D,62: 22–51.MathSciNetzbMATHCrossRefGoogle Scholar
  13. Guckenhiemer J. & Williams R. F., 1980. Structural stability of the Lorenz attractor.Publications Mathématiques, I.H.E.S.,50: 73–100.Google Scholar
  14. Hall T., 1991. Unremovable periodic orbits of homeomorphisms.Math. Proc. Camb. Phil. Soc.,110: 523–531.zbMATHCrossRefGoogle Scholar
  15. Hastings S. P.& Troy W., 1988. Oscillating solutions of the Falkner-Skan equation for positive beta.J. Diff. Eqn.,71: 123–144.MathSciNetzbMATHCrossRefGoogle Scholar
  16. Hastings S. P. & Troy W., 1993. A proof that the Lorenz equations have a homoclinic orbit.J. Diff. Eqn., to appear.Google Scholar
  17. Hénon M. & Pomeau Y., 1976. Two strange attractors with a simple structure. InTurbulence and Navier-Stokes Equations, ed. Temam R. Lect. Notes Math.,565:29–68, Springer-Verlag, New York.Google Scholar
  18. Lorenz E. N., 1963. Deterministic non-periodic flows.J. Atmos. Sci.,20: 130–141.CrossRefGoogle Scholar
  19. Nolte K.-G., 1987. Über Attraktoren im Lorenz-system. Diploma, Bonn.Google Scholar
  20. Robinson C., 1989. Homoclinic bifurcation to a transitive attractor of Lorenz type.Non-linearity 2(4): 495 – 518.zbMATHGoogle Scholar
  21. Sevryuk M. B., 1986.Reversible systems. Lect. Notes Math.1211, Springer-Verlag, Berlin.Google Scholar
  22. Shil’nikov L. P., 1965. A case of the existence of a denumerable set of periodic motions.Soviet Math. Dokl.,6: 163–166.Google Scholar
  23. Shil’nikov L. P., 1970. A contribution to the problem of the structure of an extended neighbourhood of a structurally stable equilibrium state of saddle-focus type.Math. USSR Sbornik,10: 91–102.zbMATHCrossRefGoogle Scholar
  24. Sparrow C., 1982.The Lorenz Equations: Bifurcations, Chaos and Strange Attractors. Appl. Math. Sci.41, Springer-Verlag, New York.CrossRefGoogle Scholar
  25. Sparrow C. and Swinnerton-Dyer H. P. F., 1993. The Falkner-Skan Equation II: The bifurcations of P and Q-orbits in the Falkner-Skan equation. Inpreparation.Google Scholar
  26. Swinnerton-Dyer H. P. F., 1984. The basic Lorenz list and Sparrow’s Conjecture A.J. London Math. Soc. (2),29: 509–520.MathSciNetzbMATHCrossRefGoogle Scholar
  27. Swinnerton-Dyer H. P. F. & Sparrow C., 1993. The Falkner-Skan Equation I: The creation of strange invariant sets.J. Diff. Eqn., to appear.Google Scholar
  28. Williams R. F., 1980. Structure of Lorenz attractors.Publications Mathématiques, I.H.E.S. 50: 59 – 72.Google Scholar
  29. Yorke J. & Alligood K., 1983. Cascades of period-doubling bifurcations: a prerequisite for horseshoes.Bull. Amer. Math. Soc. (N. S.),9: 319–322.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  1. 1.Department of Pure Mathematics and Mathematical StatisticsUniversity of CambridgeCambridgeUK

Personalised recommendations