A Monotonicity Conjecture for Real Cubic Maps

Part of the NATO ASI Series book series (ASIC, volume 464)


This will be an outline of work in progress. We study the conjecture that the topological entropy of a real cubic map depends “monotonely” on its parameters, in the sense that each locus of constant entropy in parameter space is a connected set.


Periodic Orbit Entropy Function Topological Entropy Order Type Hyperbolic Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [B]
    R. Bowen,On Axiom A Diffeomorphisms, Proc. Reg. Conf. Math. 35, 1978.Google Scholar
  2. [B K]
    L. Block and J. Keesling, “Computing topological entropy of maps of the interval with three monotone pieces”,J. Statist. Phys.66 (1992) 755–774.MathSciNetzbMATHCrossRefGoogle Scholar
  3. [BMT]
    K. Brucks, M. Misiurewicz, and C. Tresser, “Monotonicity properties of the family of trapezoidal maps,Commun. Math. Phys.137 (1991) 1–12.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [B R]
    V. Baladi and D. Ruelle, “An extension of the theorem of Milnor and Thurston on the zeta functions of interval maps”, Ergodic Theory and Dynamical Systems, to appearGoogle Scholar
  5. [BST]
    N.J.Balmforth, E.A.Spiegel and C. Tresser, “The topological entropy of one-dimensional maps: approximation and bounds”, to appear.Google Scholar
  6. [D]
    A. Douady, “Topological entropy of unimodal maps”, Proceedings NATO Institute on Real and Complex Dynamical Systems, Hiller0d 1993, these proceedings.Google Scholar
  7. [D G]
    S.P. Dawson and C. Grebogi, “Cubic maps as models of two-dimensional antimono- tonicity,Chaos,Solitons & Fractals1 (1991), 137–144.Google Scholar
  8. [DGK]
    S.P. Dawson, C. Grebogi and H. Koçak, “A geometric mechanism for antimonotonicity in scalar maps with two critical points,” Phys. Rev. E (in press).Google Scholar
  9. [DGKKY]
    S.P. Dawson, C. Grebogi, I. Kan, H. Koçak and J.A. Yorke, “Antimonotonicity: inevitable reversals of period doubling cascades,Phys. Lett. A162 (1992) 249–254.CrossRefGoogle Scholar
  10. [DGMT]
    S.P. Dawson, R. Galeeva, J. Milnor and C. Tresser, “Monotonicity and antimonotonicity for bimodal maps”, manuscript in preparation.Google Scholar
  11. [DH1]
    A.Douady and J.Hubbard, “A proof of Thurston’s Topological Characterization of Rational Maps”; Preprint, Institute Mittag-Leffler 1984.Google Scholar
  12. [DH2]
    A. Douady and J. H. Hubbard, “Etude dynamique des polynômes quadratiques complexes,” I (1984) & II (1985), Pub/. Mat. d’Orsay.Google Scholar
  13. [dM vS]
    W. De Melo and S. Van Strien, One Dimensional Dynamics, Springer V., 1993.Google Scholar
  14. [F]
    P. Fatou, “Sur les équations fonctionnelles, II”,Bull. Soc. Math.France 48 (1920) 33–94.MathSciNetGoogle Scholar
  15. [Ga]
    R. Galeeva, “Kneading sequences for piecewise linear bimodal maps”, to appear.Google Scholar
  16. [Gu]
    J. Guckenheimer, “Dynamical Systems”, C.I.M.E. Lectures (J. Guckenheimer, J. Moser and S. Newhouse), Birkhäuser, Progress in Mathematics8, 1980.Google Scholar
  17. [K]
    A. Katok, “Lyapunov exponents, entropy and periodic orbits of diffeomorphisms”,Pub. Math.IHES 51 (1980) 137–173.MathSciNetzbMATHGoogle Scholar
  18. [L]
    M. Lyubich, “Geometry of quadratic polynomials: moduli, rigidity, and local connectivity”, Stony Brook I.M.S. Preprint 1993/9.Google Scholar
  19. [Ml]
    J. Milnor, “Remarks on iterated cubic maps”,Experimental Math.1 (1992) 5–24.MathSciNetzbMATHGoogle Scholar
  20. [M2]
    J. Milnor, “Hyperbolic components in Spaces of Polynomial Maps (with an appendix by A. Poirier)”, Stony Brook I.M.S. Preprint 1992#3.Google Scholar
  21. [M3]
    J. Milnor, “On cubic polynomials with periodic critical point”, in preparation.Google Scholar
  22. [Ma T]
    R.S MacKay and C. Tresser,`Boundary of topological chaos for bimodal maps of the interval,J. London Math. Soc.37 (1988), 164–81; “Some flesh on the skeleton: the bifurcation structure of bimodal maps”,Physica 27D (1987) 412–422.MathSciNetGoogle Scholar
  23. [Mcl]
    C. McMullen, “Automorphisms of rational maps”, pp. 31–60 ofHolomorphic Functions and Moduli I, ed. Drasin, Earle, Gehring, Kra & Marden; MSRI Publ. 10, Springer 1988.Google Scholar
  24. [Mc2]
    C. McMullen, “Complex dynamics and renormalization”, preprint, U.C. Berkeley 1993.Google Scholar
  25. [Mis]
    M. Misiurewicz, “On non-continuity of topological entropy”,Bull. Ac Pol. Sci.,Ser. Sci. Math. Astr.Phys.19 (1971) 319–320.Google Scholar
  26. [M Sz]
    M. Misiurewicz and W. Szlenk, “Entropy of piecewise monotone mappings”,Studia Math.67 (1980) 45–63Google Scholar
  27. M. Misiurewicz and W. Szlenk, “Entropy of piecewise monotone mappings”,Astérisque 50 (1977) 299–310MathSciNetGoogle Scholar
  28. [MTh]
    J. Milnor and W. Thurston, “On iterated maps of the interval,Springer Lecture Notes 1342 (1988), 465–563.MathSciNetGoogle Scholar
  29. [N]
    S. Newhouse, “Continuity properties of entropy”,Ann. Math.129 (1989) 215–235Google Scholar
  30. S. Newhouse, “Continuity properties of entropy”,Ann. Math.131 (1990) 409–410.Google Scholar
  31. [Po]
    A. Poirier, “On post critically finite polynomials, Part II, Hubbard Trees”, Stony Brook I.M.S. Preprint 1993/7.Google Scholar
  32. [Pr]
    C. Preston, “What you need to know to knead”,Advances Math.78 (1989) 192–252.MathSciNetzbMATHCrossRefGoogle Scholar
  33. [Ro]
    J. Rothschild, “On the computation of topological entropy”, Thesis, CUNY 1971.Google Scholar
  34. [R S]
    J. Ringland and M. Schell, “Genealogy and bifurcation skeleton for cycles of the iterated two-extremum map of the interval”,SIAM J. Math. Anal.22 (1991) 1354–1371.MathSciNetzbMATHGoogle Scholar
  35. [R T]
    J. Ringland and C. Tresser, “A genealogy for finite kneading sequences of bimodal maps of the interval”, preprint, IBM 1993.Google Scholar
  36. [St]
    J. Stimson, “Degree two rational maps with a periodic critical point”, Thesis, Univ. Liverpool 1993.Google Scholar
  37. [Sw]
    G. Swiatek, “Hyperbolicity is dense in the real quadratic family”, Stony Brook I.M.S. Preprint 1992/10.Google Scholar
  38. [Y]
    Y. Yomdin, “Volume growth and entropy”, Isr. J. Math. 57 (1987) 285–300. (See also “ CI`-resolution of semialgebraic mappings”, ibid. pp. 301–317.).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  1. 1.Los Alamos National LaboratoryC.N.L.S.Los AlamosUSA
  2. 2.Mathematics Dept.Northwestern Univ.EvanstonUSA
  3. 3.Institute for Mathematical SciencesSUNYStony BrookUSA
  4. 4.I.B.M.Yorktown HeightsUSA

Personalised recommendations