Topological Entropy of Unimodal Maps

Monotonicity for Quadratic Polynomials
Part of the NATO ASI Series book series (ASIC, volume 464)


In Section 1, we give the definition and general properties of the topological entropy of a map f : XX where X is a compact (metrizable) space.


Compact Space Open Covering Quadratic Polynomial Topological Entropy External Argument 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [H]
    J. H. Hubbard, Local connectivity of Julia sets and bifurcation loci: three theorems of J.-C. Yoccoz, Topological Methods in Modern Mathematics, A symposium in Honor of John Milnor’s Sixtieth Birthday, Publish or Perish, 1993, pp. 429–465.Google Scholar
  2. [D]
    A. Douady, Chirurgie sur les applications holomorphes, Proceedings of the International Congress of Mathematics Berkeley 1986, pp. 724–738.Google Scholar
  3. [Y]
    L. S. Young, On the prevalence of horseshoes, Trans. A. M. S. 263, 75–88.Google Scholar
  4. [DH1]
    A. Douady and J. H. Hubbard, Etudes dynamiques des polynomes complexes I Fl II (198485), Publ. Math. d’Orsay.Google Scholar
  5. [DH2]
    A. Douady and J. H. Hubbard, On the dynamics of polynomial-like mappings,Ann. Sci. E. N. S. 18 (1985), Paris, 287–343.Google Scholar
  6. [MT]
    J. Milnor and W. Thurston, On iterated maps of the interval, Springer Lecture Notes 1342 (1988), 465–563.MathSciNetGoogle Scholar
  7. [S]
    S. van Strien, Real bounds in complex dynamics,in this proceedings.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  1. 1.Département de MathématiquesUniversité de Paris-SudOrsayFrance

Personalised recommendations