Advertisement

Dynamical Zeta Functions

Chapter
Part of the NATO ASI Series book series (ASIC, volume 464)

Abstract

We discuss various results about weighted dynamical zeta functions for real and complex hyperbolic dynamical systems, mainly their relationship with transfer operators.

Key words

zeta function Ruelle zeta function transfer operator thermodynamic formalism Fredholm determinant expanding map Axiom A hyperbolic map interval map 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Artin, M. and Mazur, B.: 1965, On periodic points’, Ann. of Math. (2) Vol. no. 21, pp. 82–99Google Scholar
  2. Artuso, R., Aurell, E. and Cvitanovie, P.: 1990, Recycling of strange sets: I. Cycle expansions, II. Applications’, Nonlinearity Vol. no. 3, pp. 325–359 and 361–386Google Scholar
  3. Baladi, V.: 1991, Comment compter avec les fonctions zêta?’, Gaz. Math. Vol. no. 47, pp. 79–96Google Scholar
  4. Baladi, V. and Keller, G.: 1990, Zeta functions and transfer operators for piecewise monotone transformations’, Comm. Math. Phys Vol. no 127, pp. 459–477Google Scholar
  5. Baladi, V. and Ruelle, D.: 1993, An extension of the theorem of Milnor and Thurston on zeta functions of interval maps’, IHES Preprint, to appear Ergodic Theory Dynamical Systems Bochner, S., and Martin W.T.: 1948, Several Complex Variables Princeton University Press, Princeton, NJGoogle Scholar
  6. Bowen, R.: 1975, Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Math. Vol. no. 470, Springer, BerlinGoogle Scholar
  7. Bowen, R. and Lanford, O.E. III: 1970, Zeta functions of restrictions of the shift transformation’, Proc. Sympos. Pure Math. Vol. no. 14, pp. 43–50Google Scholar
  8. Bowen, R. and Ruelle, D.: 1975, The ergodic theory of Axiom A flows’, Invent. Math. Vol. no. 29, pp. 181–202Google Scholar
  9. Christiansen, F., Cvitanovié, P. and Rugh, H.H.: 1990, The spectrum of the period-doubling operator in terms of cycles’, J. Phys. A Vol. no. 23, pp. L713–L717Google Scholar
  10. Devaney, R.: 1987 An Introduction to Chaotic Dynamical Systems, Addison-Wesley, Reading, MA Dunford, N. and Schwartz, J.T.: 1957 Linear Operators, Part I, Wiley-Interscience Publishers, New YorkGoogle Scholar
  11. Fried, D.: 1986, The zeta functions of Ruelle and Selberg I’, Ann. Sci. École Norm. Sup. (4) Vol. no. 19, pp. 491–517Google Scholar
  12. Gallavotti, G.: 1976, Funzioni zeta ed insiemi basilari’, Accad. Lincei Rend. Sc. fis., mat. e nat. Vol. no. 61, pp. 309–317Google Scholar
  13. Ghys, E.: 1987, Flots d’Anosov dont les feuilletages stables sont différentiables’, Ann. Sci. École Norm. Sup. (4) Vol. no. 20, pp. 251–270Google Scholar
  14. Grothendieck, A.: 1955, Produits tensoriels topologiques et espaces nucléaires’, Mem. Amer. Math. Soc. Vol. no. 16 Google Scholar
  15. Grothendieck, A.: 1956, La théorie de Fredholm’, Bull. Soc. Math. France Vol. no. 84, pp. 319–384 Haydn, N.T.A.: 1990a, Gibbs functionals on subshifts’, Comm. Math. Phys. Vol. no. 134, pp. 217–236Google Scholar
  16. Haydn, N.T.A.: 1990b, Meromorphic extension of the zeta function for Axiom A flows’, Ergodic Theory Dynamical Systems Vol. no. 10, pp. 347–360Google Scholar
  17. Hejhal, D.A.: 1976, The Selberg Trace Formula for PSL(2, R), Vol. 1., Lecture Notes in Math. Vol. no. 548, Springer, BerlinGoogle Scholar
  18. Hofbauer, F.: 1986, Piecewise invertible dynamical systems’, Probab. Theory Related Fields. Vol. no. 72, pp. 359–386MathSciNetzbMATHCrossRefGoogle Scholar
  19. Hofbauer, F. and Keller, G.: 1982, Ergodic properties of invariant measures for piecewise monotonic transformations’, Math. Z. Vol. no. 180, pp. 119–140MathSciNetzbMATHCrossRefGoogle Scholar
  20. Hofbauer, F. and Keller, G.: 1984, Zeta-functions and transfer-operators for piecewise linear transformations’, J. Reine Angew. Math. Vol. no. 352, pp. 100–113MathSciNetzbMATHGoogle Scholar
  21. Hurt, N.E.: 1993, Zeta functions and periodic orbit theory: a review’, Resultate Math. Vol. no. 23, pp. 55–120MathSciNetzbMATHGoogle Scholar
  22. Isola, S.: 1990, c-functions and distribution of periodic orbits of toral automorphisme’, Europhysics Letters Vol. no. 11, pp. 517–522CrossRefGoogle Scholar
  23. Jiang, Y., Morita T., and Sullivan D.: 1992, Expanding direction of the period doubling operator’, Comm. Math. Phys. Vol. no. 144, pp. 509–520MathSciNetzbMATHCrossRefGoogle Scholar
  24. Keller, G.: 1989, Markov extensions, zeta-functions, and Fredholm theory for piecewise invertible dynamical systems’, Trans. Amer. Math. Soc. Vol. no. 314, pp. 433–499zbMATHCrossRefGoogle Scholar
  25. Keller, G. and Nowicki, T.: 1992, Spectral theory, zeta functions and the distribution of periodic points for Collet-Eckmann maps’, Comm. Math. Phys. Vol. no. 149, pp. 31–69MathSciNetzbMATHCrossRefGoogle Scholar
  26. Levin, G.: 1992, On Mayer’s conjecture and zeros of entire functions’, preprint Google Scholar
  27. Levin, G., Sodin, M. and Yuditskii, P.: 1991, A Ruelle operator for a real Julia set’, Comm. Math. Phys. Vol. no. 141, pp. 119–131MathSciNetzbMATHCrossRefGoogle Scholar
  28. Levin, G., Sodin, M. and Yuditskii, P.: 1992 Ruelle operators with rational weights for Julia sets’, preprint, to appear J. Analyse Math.Google Scholar
  29. Manning, A.: 1971, Axiom A diffeomorphisms have rational zeta functions’, Bull. London Math. Soc. Vol. no. 3, pp. 215–220Google Scholar
  30. Mayer, D.: 1976, On a (-function related to the continued fraction transformation’, Bull. Soc. Math. France Vol. no. 104, pp. 195–203zbMATHGoogle Scholar
  31. Mayer, D.: 1980, The Ruelle-Araki Transfer Operator in Classical Statistical Mechanics Lecture Notes in Physics Vol. no. 123, Springer, BerlinGoogle Scholar
  32. Mayer, D.: 1990, On the thermodynamic formalism for the Gauss map’, Comm. Math. Phys. Vol. no. 130, pp. 311–333zbMATHCrossRefGoogle Scholar
  33. Mayer, D.: 1991, Continued fractions and related transformations’ in Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces T. Bedford, M. Keane, C. Series, eds., Oxford University Press, OxfordGoogle Scholar
  34. Milnor, J. and Thurston, W.: 1988, On iterated maps of the interval’, in Dynamical Systems (Lecture Notes in Math. Vol. no. 1342) pp. 465–564, Springer, BerlinGoogle Scholar
  35. Mori, M.: 1990, Fredholm determinant for piecewise linear transformations’, Osaka J. Math Vol. no. 27, pp. 81–116zbMATHGoogle Scholar
  36. Mori, M.: 1991, Fredholm matrices and zeta functions for piecewise monotonic transformations’, in: Dynamical Systems and Related Topics (Nagoya 1990) Adv. Ser. Dyn. Syst., 9, World Sci. Publishing, River Edge, NJ pp. 388–400Google Scholar
  37. Parry, W.: 1984, ‘Bowen’s equidistribution theory and the Dirichlet density theorem’, Ergodic Theory Dynamical Systems Vol. no. 4, pp. 117–134MathSciNetzbMATHGoogle Scholar
  38. Parry, W.: 1988, Equilibrium states and weighted uniform distributions of closed orbits’, in Dynamical Systems (Lecture Notes in Math. Vol. no. 1342) pp. 617–625, Springer, BerlinGoogle Scholar
  39. Parry, W. and Pollicott, M.: 1983, An analogue of the prime number theorem for closed orbits of Axiom A flows’, Ann. of Math (2) Vol. no. 118, pp. 573–591Google Scholar
  40. Parry, W. and Pollicott, M.: 1990, Zeta Functions and the Periodic Structure of Hyperbolic Dynamics,Société Mathématique de France (Astérisque Vol. no. 187–188),ParisGoogle Scholar
  41. Pollicott, M.: 1984, A complex Ruelle-Perron-Frobenius theorem and two counterexamples’, Ergodic Theory Dynamical Systems Vol. no. 4, pp. 135–146MathSciNetzbMATHGoogle Scholar
  42. Pollicott, M.: 1985, On the rate of mixing of Axiom A flows’, Invent. Math. Vol. no. 81, pp. 413–426MathSciNetzbMATHCrossRefGoogle Scholar
  43. Pollicott, M.: 1986, Meromorphic extensions of generalised zeta functions’, Invent. Math. Vol. no. 85, pp. 147–164Google Scholar
  44. Pollicott, M.: 1991a, A note on the Artuso-Aurell-Cvitanovic approach to the Feigenbaum tangent operator’, J. Statist. Phys. Vol. no. 62, pp. 257–267MathSciNetzbMATHCrossRefGoogle Scholar
  45. Pollicott, M.: 1991b, Some applications of thermodynamic formalism to manifolds of constant negative curvature’, Adv. in Math. Vol. no. 85, pp. 161–192MathSciNetzbMATHCrossRefGoogle Scholar
  46. Prellberg, T.: 1991, Maps of the interval with indifferent fixed points: thermodynamic formalism and phase transitions’, (Ph. D. thesis Virginia Polytechnic Institute and State University) Ratner, M.: 1987, The rate of mixing for geodesic and horocycle flows’, Ergodic Theory Dynamical Systems, Vol. no. 7, pp. 267–288Google Scholar
  47. Riesz F., and Sz-Nagy B.: 1955, Leçons d’Analyse Fonctionnelle,3ème édition, Académie des Sciences de HongrieGoogle Scholar
  48. Ruelle, D.: 1976, Zeta functions for expanding maps and Anosov flows’, Invent. Math., Vol. no. 34, pp. 231–242Google Scholar
  49. Ruelle, D.: 1978, Thermodynamic Formalism, Addison-Wesley, Reading MAzbMATHGoogle Scholar
  50. Ruelle, D.: 1983, Flots qui ne mélangent pas exponentiellement’, C. R. Acad. Sci. Paris Sér. I Math, Vol. no. 296, pp. 191–193Google Scholar
  51. Ruelle, D.: 1987a, Resonances for Axiom A flows’, J. Differential Geom. Vol. no. 25, pp. 99–116 Ruelle, D.: 1987b, One-dimensional Gibbs states and Axiom A diffeomorphisms’, J. Differential Geom. Vol. no. 25, pp. 117–137Google Scholar
  52. Ruelle, D.: 1989, The thermodynamic formalism for expanding maps’, Comm. Math. Phys. Vol. no. 125, pp. 239–262Google Scholar
  53. Ruelle, D.: 1990, An extension of the theory of Fredholm determinants’, Inst. Hautes Etudes Sci. Publ. Math. Vol. no. 72, pp. 175–193Google Scholar
  54. Ruelle, D.: 1992, ‘Spectral properties of a class of operators associated with conformal maps in two dimensions’, Comm. Math. Phys. Vol. no. 144, pp. 537–556Google Scholar
  55. Ruelle, D.: 1993, ‘Analytic completion for dynamical zeta functions’, Hely. Phys. Acta Vol. no. 66, pp. 181–191Google Scholar
  56. Ruelle, D.: 1994, Dynamical zeta functions for piecewise monotone maps of the interval’, CRM Monograph Series, Amer. Math. Soc., Amer. Math. Soc., Providence, RIGoogle Scholar
  57. Rugh, H.H.: 1992, The correlation spectrum for hyperbolic analytic maps’, Nonlinearity Vol. no. 5, pp. 1237–1263Google Scholar
  58. Sinai, S.: 1972, Gibbs measures in ergodic theory’, Russian Math. Surveys Vol. no. 27, pp. 21–70Google Scholar
  59. Smale, S.: 1967, Differentiable dynamical systems’, Bull. Amer. Math. Soc. Vol. no. 73, pp. 747817Google Scholar
  60. Tangerman, F.: 1986, Meromorphic continuation of Ruelle zeta function’, Ph.D. Thesis, Boston University, unpublished Google Scholar
  61. Vul, E., Khanin, K., and Sinai, Y.: 1984, Feigenbaum universality and the thermodynamic formalism’, Russian Math. Surveys Vol. no. 39, pp. 1–40Google Scholar
  62. Walters, P.: 1982, An Introduction to Ergodic Theory, Springer, Graduate Texts in Math. Vol. no. 79, New YorkGoogle Scholar
  63. Young, L.-S.: 1992, ‘Decay of correlations for certain quadratic maps’, Comm. Math. Phys. Vol. no. 146, pp. 123–138Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  1. 1.CNRS, UMR 128 (Unité de Mathématiques Pures et Appliquées)Ecole Normale Supérieure de LyonLyon Cedex 07France
  2. 2.Mathematik Department — ETH ZürichETH ZentrumZürichSwitzerland

Personalised recommendations