Skip to main content

Crumeyrolle’s Bivectors and Spinors

  • Chapter
Clifford Algebras and Spinor Structures

Part of the book series: Mathematics and Its Applications ((MAIA,volume 321))

Abstract

Crumeyrolle often posed a rhetoric but baffling question: ‘What is a bivector?’ In this way Crumeyrolle tried to point out that bivectors do not exist in Clifford algebras, especially they do not exist in a canonical way in characteristic 2. However, there is a natural way to introduce bivectors in all other characteristics ≠ 2, because there is a one-to-one correspondence between quadratic forms and symmetric bilinear forms.

Crumeyrolle also emphasized geometric aspects of pure spinors because they are induced by maximal totally null subspaces of neutral quadratic spaces. The bilinear covariants of pure spinors are not directly related to the physical observables of the Dirac equation. In this paper a variant of Crumeyrolle’s spinoriality transformation is applied to extract the observables from Crumeyrolle’s spinors in such a way that they coincide with the bilinear covariants of standard column spinors, like those in Bjorken & Drell.

In short, this article solves a problem related to Crumeyrolle’s spinors and throws light on Crumeyrolle’s baffling question: ‘What is a bivector?’

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • In the text, the years 1986, 1992, 1993 indicate proceedings of the workshops on Clifford algebras held in Canterbury, Montpellier and Gent.

    Google Scholar 

  • R. Abłamowicz: 1983, ‘Indecomposable representations of degenerate Clifford algebras’, Thesis, Southern Illinois University, Carbondale.

    Google Scholar 

  • R. Abłamowicz, P. Lounesto, J. Maks: 1991, ‘Conference Report, Second Workshop on ‘Clifford Algebras and Their Applications in Mathematical Physics,’ Université des Sciences et Techniques du Languedoc, Montpellier, France, 1989’, Found. Phys. 21, 735–748.

    Article  Google Scholar 

  • L. Ahlfors, P. Lounesto: 1989, ‘Some remarks on Clifford algebras’, Complex Variables, Theory and Application 12, 201–209.

    Article  MathSciNet  MATH  Google Scholar 

  • M.F. Atiyah, R. Bott, A. Shapiro: 1964, ‘Clifford modules’, Topology 3, suppl. 1, 3–38. Reprinted in R. Bott: Lectures on K(X). Benjamin, New York, 1969, pp. 143–178. Reprinted in Michael Atiyah: Collected Works, Vol. 2. Clarendon Press, Oxford, 1988, pp. 301–336.

    Article  MathSciNet  MATH  Google Scholar 

  • I. M. Benn, R. W. Tucker: 1987, ‘An Introduction to Spinors and Geometry with Applications in Physics’, Adam Hilger, Bristol.

    Google Scholar 

  • J.D. Bjorken, S.D. Drell: 1964, ‘Relativistic Quantum Mechanics’, McGraw-Hill, New York.

    Google Scholar 

  • R. Boudet: 1992, ‘Les algèbres de Clifford et les transformations des multivecteurs’, in A. Micali et al. (eds.): Proceedings of the Second Workshop on “Clifford Algebras and their Applications in Mathematical Physics,” Montpellier, France, 1989, Kluwer, Dordrecht, pp. 343–352.

    Google Scholar 

  • N. Bourbaki: 1959, ‘Algèbre, Chapitre 9, Formes sesquilinéaires et formes quadratiques’, Hermann, Paris.

    Google Scholar 

  • P. Budinich, A. Trautman: 1988, ‘The Spinorial Chessboard’, Springer, Berlin.

    Book  Google Scholar 

  • E. Cartan (exposé d’après l’article allemand de E. Study): 1908, ‘Nombres complexes’, in J. Molk (red.): Encyclopédie des sciences mathématiques, Tome I, vol. 1, Fasc. 4, art. 15, pp. 329–468.

    Google Scholar 

  • C. Chevalley: 1946, ‘Theory of Lie Groups’, Princeton Univ. Press, Princeton.

    MATH  Google Scholar 

  • C. Chevalley: 1954, ‘The Algebraic Theory of Spinors’, Columbia University Press, New York.

    MATH  Google Scholar 

  • J. Crawford: 1985, ‘On the algebra of Dirac bispinor densities: Factorization and inversion theorems’, J. Math. Phys. 26, 1439–1441.

    Article  MathSciNet  Google Scholar 

  • A. Crumeyrolle: 1971, ‘Groupes de spinorialité’, Ann. Inst. H. Poincaré 14, 309–323.

    MathSciNet  MATH  Google Scholar 

  • A. Crumeyrolle: 1990, ‘Orthogonal and Symplectic Clifford Algebras, Spinor Structures’, Kluwer, Dordrecht.

    Book  MATH  Google Scholar 

  • R. Deheuvels: 1981, ‘Formes quadratiques et groupes classiques’, Presses Universitaires de France, Paris.

    MATH  Google Scholar 

  • V. L. Figueiredo, E. Capelas de Oliveira, W. A. Rodrigues Jr.: 1990, ‘Covariant, algebraic and operator spinors’, Internat. J. Theoret. Phys. 29, 371–395.

    Article  MathSciNet  MATH  Google Scholar 

  • W. Graf: 1978, ‘Differential forms as spinors’, Ann. Inst. H. Poincaré Sect. A 29, 85–109.

    MathSciNet  MATH  Google Scholar 

  • W. Greub: 1978, ‘Multilinear Algebra’ 2nd Ed., Springer, New York.

    Book  MATH  Google Scholar 

  • F. Gürsey: 1956, ‘Correspondence between quaternions and four-spinors’, Rev. Fac. Sci. Univ. Istanbul A21, 33–54.

    Google Scholar 

  • F. Gürsey: 1958, ‘Relation of charge independence and baryon conservation to Pauli’s transformation’, Nuovo Cimento 7, 411–415.

    Article  MATH  Google Scholar 

  • J. D. Hamilton: 1984, ‘The Dirac equation and Hestenes’ geometric algebra’, J. Math. Phys. 25, 1823–1832.

    Article  MathSciNet  Google Scholar 

  • F. R. Harvey: 1990, ‘Spinors and Calibrations’, Academic Press, San Diego.

    MATH  Google Scholar 

  • J. Helmstetter: 1982, ‘Algèbres de Clifford et algèbres de Weyl’, Cahiers Math. 25, Montpellier.

    Google Scholar 

  • D. Hestenes: 1966, 1987, 1992, ‘Space-Time Algebra’, Gordon and Breach, New York.

    MATH  Google Scholar 

  • D. Hestenes, G. Sobczyk: 1984, 1987, ‘Clifford Algebra to Geometric Calculus’, Reidel, Dordrecht.

    Book  MATH  Google Scholar 

  • P. R. Holland: 1986, ‘Relativistic algebraic spinors and quantum motions in phase space’, Found. Phys. 16, pp. 708–709.

    Article  MathSciNet  Google Scholar 

  • B. Jancewicz: 1988, ‘Multivectors and Clifford Algebra in Electrodynamics’, World Scientific Publ., Singapore.

    MATH  Google Scholar 

  • E. Kähler: 1962, ‘Der innere Differentialkalkiil’, Rendiconti di Matematica e delle sue Applicazioni (Roma) 21, 425–523.

    Google Scholar 

  • Y. Kawada, N. Iwahori: 1950, ‘On the structure and representations of Clifford algebras’, J. Math. Soc. Japan 2, 34–43.

    Article  MathSciNet  MATH  Google Scholar 

  • J. Keller, S. Rodriguez-Romo: 1990, ‘A multivectorial Dirac equation’, J. Math. Phys. 31, 2502.

    Article  MathSciNet  Google Scholar 

  • P. Kustaanheimo, E. Stiefel: 1965, ‘Perturbation theory of Kepler motion based on spinor regularization’, J. Reine Angew. Math. 218, 204–219.

    MathSciNet  MATH  Google Scholar 

  • T. Y. Lam: 1973, 1980, ‘The Algebraic Theory of Quadratic Forms’, Benjamin, Reading.

    MATH  Google Scholar 

  • H.C. Lee: 1948, ‘On Clifford algebras and their representations’, Ann. of Math. 49, 760–773.

    Article  MathSciNet  MATH  Google Scholar 

  • R. Lipschitz: 1886, ‘Untersuchungen über die Summen von Quadraten’, Max Cohen und Sohn, Bonn, 1886, pp. 1–147. (The first chapter of pp. 5–57 translated into French by J. Molk: Recherches sur la transformation, par des substitutions réelles, d’une somme de deux ou troix carrés en elle-même. J. Math. Pures Appl. (4) 2 (1886), 373–439. French résumé of all three chapters in Bull. Sci. Math. (2) 10 (1886), 163–183.

    MATH  Google Scholar 

  • P. Lounesto: 1981, ‘Scalar products of spinors and an extension of Brauer-Wall groups’, Found. Phys. 11, 721–740.

    Article  MathSciNet  Google Scholar 

  • P. Lounesto, G.P. Wene: 1987, ‘Idempotent structure of Clifford algebras’. Acta Applic. Math. 9, 165–173.

    Article  MathSciNet  MATH  Google Scholar 

  • M. Marcus: 1975, ‘Finite Dimensional Multilinear Algebra’ Part II, Marcel Dekker, New York.

    MATH  Google Scholar 

  • A. Micali, Ph. Revoy: 1977, 1979, ‘Modules quadratiques’, Cahiers Math. 10, Montpellier, 1977. Bull. Soc. Math. France 63, suppl. (1979), 5–144.

    Google Scholar 

  • Z. Oziewicz: 1986, ‘From Grassmann to Clifford’, in J.S.R. Chisholm, A.K. Common (eds.): Proceedings of the NATO and SERC Workshop on “Clifford Algebras and Their Applications in Mathematical Physics,” Canterbury, England, 1985, Reidel, Dordrecht, pp. 245–255.

    Google Scholar 

  • R. Penrose, W. Rindler: 1984, ‘Spinors and Space-Time’, Vol. 1, Cambridge University Press, Cambridge.

    Book  MATH  Google Scholar 

  • I. R. Porteous: 1969, ‘Topological Geometry’, Van Nostrand Reinhold, London, 1969. Cambridge University Press, Cambridge, 1981.

    MATH  Google Scholar 

  • W. A. Rodrigues Jr., E. Capelas de Oliveira: 1990, Dirac and Maxwell equations in the Clifford and spin-Clifford bundles’, Internat. J. Theoret. Phys. 29, 397–412.

    Article  MathSciNet  MATH  Google Scholar 

  • M. Riesz: 1958/1993, ‘Clifford Numbers and Spinors’, Univ. of Maryland, 1958. Reprinted as facsimile by Kluwer, Dordrecht, 1993.

    MATH  Google Scholar 

  • N. Salingaros, G.P. Wene: 1985, ‘The Clifford algebra of differential forms’, Acta Applic. Math. 4, 271–292.

    Article  MathSciNet  MATH  Google Scholar 

  • R. Shaw: 1983, ‘Linear Algebra and Group Representations’ Volume 2, Academic Press, New York.

    MATH  Google Scholar 

  • E. Witt: 1937, ‘Theorie der quadratischen Formen in beliebigen Körpern’, J. Reine Angew. Math. 176, 31–44.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lounesto, P. (1995). Crumeyrolle’s Bivectors and Spinors. In: Ablamowicz, R., Lounesto, P. (eds) Clifford Algebras and Spinor Structures. Mathematics and Its Applications, vol 321. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8422-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8422-7_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4525-6

  • Online ISBN: 978-94-015-8422-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics