Skip to main content

Computation of the Invariants of a Point Set in P 3 from Its Projections in P 2

  • Chapter

Abstract

In this paper, some applications of classical projective invariants in computer vision are presented. The computation of (absolute projective) invariants of a set of points in projective three space from its projections in projective two space is concerned. After a brief review of some known results in computer vision for the computation from two projections, a new algorithm which allows the computation from three projections with fewer point correspondences is presented in this paper. Some important consequences of these results for computer vision are also presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.H. Ballard and C.M. Brown. Computer Vision. Prentice Hall, 1982.

    Google Scholar 

  2. B. Boufama, R. Mohr, and F. Veillon. Euclidian constraints for uncalibrated reconstruction. In Proceedings of the 4th International Conference on Computer Vision, Berlin, Germany, pages 466–470, May 1993.

    Google Scholar 

  3. J.B. Burns, R. Weiss, and E.M. Riseman. View variation of point set and line segment features. In Proceedings of DARPA Image Understanding Workshop, Pittsburgh, Pennsylvania, USA, pages 650–659, 1990.

    Google Scholar 

  4. A.B. Coble. Algebraic Geometry and Theta Functions. American Mathematical Society, 1961.

    Google Scholar 

  5. J. Dixmier. Quelques aspects de la théorie des invariants. Gazette des Mathématiciens, 43:39–64, January 1990.

    MathSciNet  MATH  Google Scholar 

  6. O. Faugeras. What can be seen in three dimensions with an uncalibrated stereo rig? In G. Sandini, editor, Proceedings of the 2nd European Conference on Computer Vision, Santa Margherita Ligure, Italy, pages 563–578. Springer-Verlag, May 1992.

    Google Scholar 

  7. O. Faugeras and S. Maybank. Motion from point matches: Multiplicity of solutions. International Journal of Computer Vision, 3(4):225–246, 1990.

    Article  Google Scholar 

  8. O.D. Faugeras. 3D Computer Vision. M.I.T. Press, 1993.

    Google Scholar 

  9. O.D. Faugeras, Q.T. Luong, and S.J. Maybank. Camera Self-Calibration: Theory and Experiments. In G. Sandini, editor, Proceedings of the 2nd European Conference on Computer Vision, Santa Margherita Ligure, Italy, pages 321–334. Springer-Verlag, May 1992.

    Google Scholar 

  10. D. Forsyth, J.L. Mundy, A. Zisserman, C. Coelho, A. Heller, and C. Rothwelll. Invariant descriptors for 3D object recognition and pose. IEEE Transactions on PAMI, 13(10):971–991, October 1991.

    Article  Google Scholar 

  11. P. Gros and L. Quan. Projective Invariants for Vision. Technical Report RT 90 IMAG - 15 LIFIA, LIFIA-IRIMAG, Grenoble, France, December 1992.

    Google Scholar 

  12. P. Gros and L. Quan. 3D projective invariants from two images. In Geometric Methods in Computer Vision II, SPIE’s 1993 International Symposium on Optical Instrumentation and Applied Science, pages 75–86, July 1993.

    Google Scholar 

  13. R. Hartley. Invariants of points seen in multiple images. Technical report, G.E. CRD, Schenectady, 1992.

    Google Scholar 

  14. R. Hartley, R. Gupta, and T. Chang. Stereo from uncalibrated cameras. In Proceedings of the Conference on Computer Vision and Pattern Recognition, UrbanaChampaign, Illinois, USA, pages 761–764, 1992.

    Google Scholar 

  15. O. Hesse. Die cubische Gleichung, von welcher die Lösung des Problems der Homographie von M. Chasles abhängt. J. reine angew. Math., (62):188–192, 1863.

    Google Scholar 

  16. J.J. Koenderink and A. J. van Doorn. Affine structure from motion. Technical report, Utrecht University, Utrecht, The Netherlands, October 1989.

    Google Scholar 

  17. H.C. Longuet-Higgins. A computer program for reconstructing a scene from two projections. In Nature, volume 293, pages 133–135. XX, September 1981.

    Google Scholar 

  18. Q.T. Luong. Matrice Fondamentale et Autocalibration en Vision par Ordinateur. Thèse de doctorat, Université de Paris-Sud, Orsay, France, December 1992.

    Google Scholar 

  19. S.J. Maybank and O.D. Faugeras. A theory of self calibration of a moving camera. International Journal of Computer Vision, 8(2):123–151, 1992.

    Article  Google Scholar 

  20. R. Mohr, L. Morin, C. Inglebert, and L. Quan. Geometric solutions to some 3D vision problems. In J.L. Crowley, E. Granum, and R. Storer, editors, Integration and Control in Real Time Active Vision, ESPRIT BRA Series. Springer-Verlag, 1991.

    Google Scholar 

  21. R. Mohr, L. Quan, F. Veillon, and B. Boufama. Relative 3D reconstruction using multiples uncalibrated images. Technical Report RT 84-I-IMAG LIFIA 12, LIFIA-IRIMAG, 1992.

    Google Scholar 

  22. R. Mohr, F. Veillon, and L. Quan. Relative 3D reconstruction using multiple uncalibrated images. In Proceedings of the Conference on Computer Vision and Pattern Recognition, New York, USA, pages 543–548, June 1993.

    Chapter  Google Scholar 

  23. J.L. Mundy and A. Zisserman, editors. Geometric Invariance in Computer Vision. MIT Press, Cambridge, Massachusetts, USA, 1992.

    Google Scholar 

  24. L. Quan. Invariants of 6 points from 3 uncalibrated images. In J.O. Eklundh, editor, Proceedings of the 3rd European Conference on Computer Vision, Stockholm, Sweden, volume II, pages 459–470. Springer-Verlag, 1994. also to appear in IEEEPami.

    Google Scholar 

  25. L. Quan and R. Mohr. Affine shape representation from motion through reference points. Journal of Mathematical Imaging and Vision, 1:145–151, 1992. also in IEEE Workshop on Visual Motion, New Jersey, pages 249–254, 1991.

    Article  Google Scholar 

  26. C.A. Rothwell, D.A. Forsyth, A. Zisserman, and J.L. Mundy. Extracting projective structure from single perspective views of 3D point sets. In Proceedings of the 4th International Conference on Computer Vision, Berlin, Germany, pages 573–582, May 1993.

    Google Scholar 

  27. J.G. Semple and G.T. Kneebone. Algebraic Projective Geometry. Oxford Science Publication, 1952.

    MATH  Google Scholar 

  28. A. Shashua. Projective Structure from Two Uncalibrated Images: Structure from Motion and Recognition. Technical Report A.I. Memo No. 1363, Massachusetts Institute of Technology, September 1992.

    Google Scholar 

  29. A. Sparr and G. Sparr. On a theorem of M. Chasles. Technical report, Lund Institute of Technology, 1994.

    Google Scholar 

  30. G. Sparr. An algebraic/analytic method for reconstruction from image correspondance. In Proceedings of the 7th Scandinavian Conference on Image Analysis, Aalborg, Denmark, pages 274–281, 1991.

    Google Scholar 

  31. R. Sturm. Das Problem der Projektivität und seine Anwendung auf die Flächen zweiten Grades. Math. Ann., 1:533–574, 1869.

    Article  MathSciNet  MATH  Google Scholar 

  32. I. Weiss. Projective invariants of shapes. In Proceedings of DARPA Image Understanding Workshop, Cambridge, Massachusetts, USA, pages 1125–1134, 1988.

    Google Scholar 

  33. N. White. Tutorial on Grassmann-Cayley algebras. in this proceedings, 1994.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Quan, L. (1995). Computation of the Invariants of a Point Set in P 3 from Its Projections in P 2 . In: White, N.L. (eds) Invariant Methods in Discrete and Computational Geometry. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8402-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8402-9_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4572-0

  • Online ISBN: 978-94-015-8402-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics