Skip to main content

Computational Advances in Robot Kinematics

  • Chapter

Abstract

This paper presents an overview of the current state-of-the-art in solving the sets of nonlinear equations which arise in robot kinematics. It reviews some recent results and the history and fundamental concepts of the most widely used computational methods. The paper deals mainly with equations with numerical coefficients, since for such equations methods have been developed which, in principle, will allow for the determination of all solutions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Roth and F. Freudenstein, “Synthesis of Path-Generating Mechanisms by Numerical Methods,” Journal of Engineering for Industry, Trans. ASME, v. 85, pp. 298–307 (1963).

    Google Scholar 

  2. C.W. Wampler, A.P. Morgan and A.J. Sommese, “Numerical Continuation Methods for Solving Polynomial Systems Arising in Kinematics,” Journal of Mechanical Design, Trans. ASME, v. 112, pp. 59–68 (1990).

    Article  Google Scholar 

  3. G.K. Starns and D.R. Flugrad Jr., “Five-Bar Path Generation Synthesis by Continuation Methods,” Mechanism Synthesis and Analysis, eds. M. McCarthy, S. Derby and A. Pisano, DE. Vol. 25, ASME, pp. 353–360 (1990).

    Google Scholar 

  4. A.P. Morgan, Solving Polynomial Systems Using Continuation for Scientific and Engineering Problems, Prentice-Hall, Englewood Cliffs, NJ (1986).

    Google Scholar 

  5. M. Raghavan, `The Stewart Platform of General Geometry Has 40 Configurations,” Journal of Mechanical Design, Trans. ASME, v. 115, 2, pp. 277–282 (1993).

    Google Scholar 

  6. C. Wampler, A. Morgan and A. Sommese, “Numerical Continuation Methods for Solving Polynomial Systems Arising in Kinematics,” Journal of Mechanical Design, Trans. ASME, v. 112, pp. 59–68 (1990).

    Article  Google Scholar 

  7. L.W. Tsai and A. Morgan, “Solving the Kinematics of the Most General Six-and FiveDegree-of-Freedom Maniipulators by Continuation Methods,” Journal of Mechanisms, Transmissions, and Automation in Design, Trans. ASME, v. 107, pp. 189–200 (1985).

    Google Scholar 

  8. M. Raghavan and B. Roth, “On the Design of Manipulators for Applying Wrenches,” Proceedings of the 1989 IEEE International Conference on Robotics and Automation, vol. 1, pp. 438–443 (1989).

    Article  Google Scholar 

  9. H. Hironaka, “Resolution of Singularities of an Algebraic Variety Over a Field of Characteristic Zero: 1,2,” Annals of Mathematics, v. 79, pp. 109–326 (1964).

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Buchberger, “Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory,” Chapter 6 in Multidimensional System Theory, ed. N. K. Bose. D. Reidel Publishing Co. (1985).

    Google Scholar 

  11. D. Kapur, “Geometry Theorem Proving Using Gröbner Bases, Journal of Symbolic Computation, v.2 (1986).

    Google Scholar 

  12. B. Kutzler and S. Stifter, “On the Application of Buchbergei s Algorithm to Automated Geometry Theorem Proving,” Journal of Symbolic Computation, v. 2 (1986).

    Google Scholar 

  13. Kluwer Academic Publishers, Dordrecht, pp.175–183 (1993).

    Google Scholar 

  14. A. Cayley, “On the Theory of Elimination,” Cambridge and Dublin Mathematics Journal, v.3 (1848).

    Google Scholar 

  15. G. Salmon, Higher Algebra, 5th Edition ( 1885 ), Chelsea Publishing Co., NY (1964).

    Google Scholar 

  16. B. Van der Waerden, Modern Algebra, vol.2, Frederick Unger Publishing Co. (1964).

    Google Scholar 

  17. J. Jouanolou, Singularities rationelles du Resultant, Lecture Notes in Mathematics, No. 732, Springer-Verlag (1978).

    Google Scholar 

  18. W. Fulton, Intersection Theory, Springer-Verlag (1984).

    Google Scholar 

  19. J.F. Canny, The Complexity of Robot Motion Planning, MIT Press, Cambridge, MA (1987).

    Google Scholar 

  20. B. Roth, “Computations in Kinematics,” Computational Kinematics (J. Angeles, G. Hommel and P. Kovacs, Eds.) Kluwer Academic Publishers, Dordrecht, pp.3–14 (1993).

    Google Scholar 

  21. D.L. Pieper, The Kinematics of Manipulators Under Computer Control, Ph.D. dissertation, Dept. of Mechanical Engineering, Stanford University (1968).

    Google Scholar 

  22. D.L. Pieper and B. Roth, “The Kinematics of Manipulators Under Computer Control,” Proc. Second Int. Congress on the Theory of Machines and Mechanisms, Zakopane, Poland, v. 2, pp. 159–169 (1969).

    Google Scholar 

  23. M. Chace, “Vector Analysis of Linkages,” Journal of Engineering for Industry, Trans. ASME, v. 85, pp. 289–297 (1963).

    Article  Google Scholar 

  24. J. Duffy, Analysis of Mechanisms and Robot Manipulators, Halstead Press (John Wiley Sons) New York (1980).

    Google Scholar 

  25. J. Duffy and C. Crane, “A Displacement Analysis of the General Spatial Seven-Link, 7R Mechanism,” Mechanism and Machine Theory, v. 15, pp. 153–169 (1980).

    Article  Google Scholar 

  26. H.Y. Lee and C.G. Liang, Displacement Analysis of the General Spatial 7—Link 7R Mechanism, “Mechaism and Machine Theory, v. 23, pp. 219–226 (1988).

    Article  Google Scholar 

  27. C.G. Liang, H.Y. Lee and Q.Z. Liao, Analysis of Spatial Linkages and Robot Mechaisms, Beijing University of Post Telecommunications Publishing House, Beijing (1988)

    Google Scholar 

  28. M. Raghavan and B. Roth, “Kinematic Analysis of the 6R Manipulator of General Geometry,” Robotics Research, The Fifth International Symposium, eds. H. Miura and S. Arimoto, MIT Press, pp.263–270 (1990).

    Google Scholar 

  29. M. Raghavan and B. Roth, “A General Solution of the Inverse Kinematics of All Series Chains,” Proceedings Eight CISM-IFToMM Symposium on Theory and Practice of Robots and Manipulators, Hermes, Paris (1991).

    Google Scholar 

  30. M. Raghavan and B. Roth, “Inverse Kinematics of the General 6R Manipulator and Related Linkages,” Journal of Mechanical Design, Trans. ASME (1992).

    Google Scholar 

  31. C. Mavroidis and B. Roth, “Structural Parameters which Reduce the Number of Manipulator Configurations,” Trans. ASME, J. of Mech. Des., v. 115, pp. 3–10 (1994).

    Article  Google Scholar 

  32. C. Mavroidis and B. Roth, “Analysis and Synthesis of Overconstrained Mechanisms,” Accepted for publication in the proceedings of the ASME Mechanisms Conference (1994).

    Google Scholar 

  33. J. Weiss, “Resultant Methods for the Inverse Kinematics Problem,” Computational Kinematics (J. Angeles, G. Hommel and P. Kovacs, Eds.) Kluwer Academic Publishers, Dordrecht, pp.41–52 (1993).

    Google Scholar 

  34. D. Manocha and J.F. Canny, “Real Time Inverse Kinematics for General 6R Manipulators,” Proceedings of the 1992 IEEE International Conference on Robotics and Automation, v. 1, pp. 383–389 (1992).

    Article  Google Scholar 

  35. D. Manocha and Y. Zhu, “A Fast Algorithm and System for the Inverse Kinematics of General Serial Manipulators,” Proceedings of the 1994 IEEE International Conference on Robotics and Automation (1994).

    Google Scholar 

  36. M. Ghazvini, “Reducing the Inverse Kinematics of Manipulators to the Solution of a Generalized Eigenproblem,” Computational Kinematics (J. Angeles, G. Hommel and P. Kovacs, Eds.) Kluwer Academic Publishers, Dordrecht, pp.15–26 (1993).

    Google Scholar 

  37. D. Kohli and M. Osvatic, The Inverse Kinematics of General Serial Manipulators, monograph published by the authors, Milwaukee, (1992).

    Google Scholar 

  38. K.H. Hunt and E.J.F. Primrose “Assembly Configurations of Some In—parallel —actuated Manipulators,” Mech. and Mach. Th., v. 28, 1, pp. 31–42 (1993).

    Article  Google Scholar 

  39. C. Innocenti and V. Parenti—Castelli “Direct Position Analysis of the Stewart Platform Mechanism,” Mech. and Mach. Theory, v. 25, 6, pp. 611–621 (1990).

    Article  Google Scholar 

  40. J.-P. Merlet, Les robots parallèles, Hermès, Paris (1990).

    Google Scholar 

  41. D. Lazard and J—.P Merlet, “The (true) Stewart Platform has 12 Configurations” Proceedings of the 1994 IEEE International Conference on Robotics and Automation, (1994).

    Google Scholar 

  42. W. Lin, J. Duffy and M. Griffis, “Forward Displacement Analyses of the 4–4 Stewart Platforms,” Mechanism Synthesis and Analysis, eds. M. McCarthy, S. Derby and A. Pisano, DE. Vol. 25, ASME, pp. 263–270 (1990).

    Google Scholar 

  43. C. Innocenti and V. Parenti—Castelli “Closed—Form Direct Position Analysis of the 5–5 Parallel Mechanism,” Journal of Mechanical Design, Trans. ASME, v. 115, pp. 515–521 (1993).

    Google Scholar 

  44. H.Y. Lee and B. Roth, “A Closed—Form Solution of the Forward Displacement Analysis of a Class of In—Parallel Mechanisms,” Proceedings of 1993 IEEE International Conference on Robotics and Automation, Atlanta, Georgia, v. 1, pp. 720–724 (1993).

    Google Scholar 

  45. K.J. Waldron, B. Roth and M. Raghavan, “Kinematics of a Hybrid Serial-Parallel Manipulator System,” Journal of Dynamic Systems, Tans. ASME, v. 111, pp. 211–221 (1989).

    Google Scholar 

  46. M. Lee, M. and D.K. Shah, “Kinematic Analysis of a Three Degrees of Freedom In-Parallel Actuated Manipulator, Proceedings of the 1987 IEEE International Conference on Robotics and Automation, Vol. 1, pp. 345–350 (1987).

    Google Scholar 

  47. K.E. Zanganeh and J. Angeles, “The Semigraphical Solution of the Direct Kinematics of General Platform Manipulators,” Computational Kinematics (J. Angeles, G. Hommel and P. Kovaacs, Eds.) Kluwer Academic Publishers, Dordrecht, pp.165–174 (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Roth, B. (1994). Computational Advances in Robot Kinematics. In: Lenarčič, J., Ravani, B. (eds) Advances in Robot Kinematics and Computational Geometry. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8348-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8348-0_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4434-1

  • Online ISBN: 978-94-015-8348-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics