Skip to main content

Algebraic and Geometric Aspects of the Theory of Polynomial Vector Fields

  • Chapter

Part of the book series: NATO ASI Series ((ASIC,volume 408))

Abstract

Due to the algebraic form of polynomial vector fields, questions and techniques of an algebraic or algebro-geometric nature are suitable for this setting. In these notes we discuss some of them together with applications.

This work was supported by the Natural Sciences and Engineering Research Council of Canada and the Fonds pour la formation de chercheurs et l’aide à la recherche of Québec.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnold, V.I., On local problems in analysis, Vestnik Moskov. Univ. Ser. I Mat. Meh. 25 (1970) no. 2, 52–56.

    MathSciNet  Google Scholar 

  2. Bautin, N.N., On the number of limit cycles which appear with the variation of coefficients from an equilibrium position of focus or center type, Mat. Sb. (N.S.) 30 (72) (1952), 181–196 (Russian); Transi. Amer. Math. Soc. Ser. (1) 100 (1954), 397–413.

    Google Scholar 

  3. Berlinskii, V., On the behaviour of the integral curves of a differential equation, Izv. Vyssh. Uchebn. Zaved. Mat. 1960 no. 2 (15), 3–18 (Russian).

    Google Scholar 

  4. Buchberger, B., Ein algorithmisches Kriterium für die Lösbarkeit eines algebraischen Gleichungssystems, Aequationes Math. 4 (1970), 374–383.

    Article  MathSciNet  MATH  Google Scholar 

  5. Chazy, J., Sur la théorie des centres, C. R. Acad. Sci. Paris 221 (1947), 7–10.

    Google Scholar 

  6. Christopher, C.J., Invariant algebraic curves and conditions for a center, preprint, University College of Wales, Aberystwyth, 1991.

    Google Scholar 

  7. Christopher, C.J., Polynomial systems with invariant algebraic curves, preprint, University College of Wales, Aberystwyth, 1992.

    Google Scholar 

  8. Christopher, C.J., Lloyd, N.G., On the paper of Jin and Wang concerning the conditions for a center in certain cubic systems, Bull. London Math. Soc. 22 (1990), 5–12.

    Article  MathSciNet  MATH  Google Scholar 

  9. Darboux, G., Mémoire sur les équations différentielles algébriques du premier ordre et du premier degré, Bull. Sciences Math. Sér. (2) 2(1) (1878), 60–96, 123–144, 151–200.

    Google Scholar 

  10. Date, T., Classification and analysis of two-dimensional real homogeneous quadratic differential equation systems, J. Differential Equations 32 (1979), 311–334.

    Article  MathSciNet  MATH  Google Scholar 

  11. Dolov, M.V., Limit cycles in the case of a center, Differentsial’nye Uravneniya 8 (1972), 1691–1692 (Russian); Differential Equations 8 (1972), 1304–1305.

    Google Scholar 

  12. Dulac, H., Détermination et intégration d’une certaine classe d’équations différentielles ayant pour point singulier un centre, Bull. Sciences Math. Sér. (2) 32 (1) (1908), 230–252.

    MathSciNet  Google Scholar 

  13. Frommer, M., Über das Auftreten von Wirbeln und Strudeln (geschlossener und spiraliger Integralkurven) in der Umgebung rationaler Unbestimmheitsstellen, Math. Ann. 109 (1934), 395–424.

    Google Scholar 

  14. Gagné, M., Calcul des constantes de Poincaré-Lyapunov, preprint, Université de Montréal, 1992.

    Google Scholar 

  15. Geddes, K.O., Labahn, G., Scazpor, S.R., Algorithms for Computer Algebra, Kluwer Academic Publishers, Boston-Dordrecht-London 1992.

    Book  MATH  Google Scholar 

  16. Hewitt, C.G., Algebraic invariant curves in cosmological dynamical systems and exact solutions, Gen. Relativity Gravitation 23 (1991), 1363–1365.

    Article  MathSciNet  Google Scholar 

  17. Hilbert, D., Mathematische Probleme (Lecture at the Second International Congress of Mathematicians, Paris 1900), Nachr. Ges. Wiss. Göttingen Math.-Phys. KI. 1900, 253–2977; reprinted in: Mathematical Developments Arising from Hilbert Problems (F.E. Browder, ed.), Proc. Sympos. Pure Math. 28, Amer. Math. Soc., Providence, RI, 1976, 1–34.

    Google Scholar 

  18. Hironaka, H., Resolution of singularities of an algebraic variety over a field of characteristic zero: I, II, Ann. of Math. 79 (1964), 109–326.

    Article  MathSciNet  MATH  Google Scholar 

  19. Ilyashenko, Yu.S., Algebraic nonsolvability and almost algebraic solvability of the center-focus problem, Functional Anal. Appl. 6 (3) (1972), 30–37.

    MathSciNet  Google Scholar 

  20. de Jager, P., Phase portraits of quadratic systems-higher order singularities and separatrix cycles, Ph.D. thesis, Technische Universiteit Delft, 1989.

    Google Scholar 

  21. Jin, Xiaofan, Wang, Dongrning, On the conditions of Kukles for the existence of a centre, Bull. London Math. Soc. 22 (1990), 1–4.

    Google Scholar 

  22. Jouanolou, J.P., Équations de Pfaff algébriques, Lecture Notes in Math. 708, Springer-Verlag, Berlin-Heidelberg-New York, 1979.

    Google Scholar 

  23. Kaplansky, I.,Hilbert’s Problems,University of Chicago Press, 1977, preliminary edition.

    Google Scholar 

  24. Kapteyn, W., On the midpoints of integral curves of differential equations of the first degree, Nederl. Akad. Wetensch. Verslagen Afd. Natuurkunde 19 (1911), 1446–1457 (Dutch).

    Google Scholar 

  25. New investigations on the midpoints of integrals of differential equations of the first degree, Nederl. Akad. Wetensch. Verslagen Afd. Natuurkunde 20 (1912), 1354–1365; 21 (1912), 27–33.

    Google Scholar 

  26. Kooij, R., Limit cycles in polynomial systems, Ph.D. thesis (first draft ), Technische Universiteit Delft, December 1992.

    Google Scholar 

  27. Kukles, I.S., Sur quelques cas de distinction entre un foyer et un centre, Dokl. Akad. Nauk. SSSR 42 (1944), 208–211.

    Google Scholar 

  28. Liouville, J., Sur les transcendentes elliptiques de première et de seconde espèce, considérées comme fonctions de leur amplitude, J. École Polytech. 14 (1834), 289296.

    Google Scholar 

  29. Liouville, J., Mémoire sur l’intégration d’une classe de fonctions transcendentes, J. Reine Angew. Math. 13 (1835), 93–118.

    Article  MATH  Google Scholar 

  30. Lunkevich, V.A., Sibirskii, K.S., Integrals of general quadratic differential systems in cases of a center, Differentsial’nye Uravneniya 18 (1982), 786–792 (Russian); Differential Equations 18 (1972), 563–568.

    Google Scholar 

  31. Lunkevich, V.A., Sibirskii, K.S., Integrals of a system with a homogeneous third-degree nonlinearity in the case of a center, Differentsial’nye Uravneniya 20 (1984), 1360–1365 (Russian); Differential Equations 20 (1984), 1000–1005.

    Google Scholar 

  32. Lützen, J., Joseph Liouville 1809–1882: Master of Pure and Applied Mathematics, Springer-Verlag, Berlin-Heidelberg-New York 1990.

    Google Scholar 

  33. Lyapunov, M.A., Problème général de la stabilité du mouvement, Ann. of Math. Stud. 17, Princeton University Press, 1947.

    Google Scholar 

  34. Maier, A., Complement to chapter xi, O Krivih Opredeliaemih Differentsialnimi Uravneniami (Moskva-Leningrad) (A.A. Andronov, ed.), OGIZ Gortehizdad, Moskva-Leningrad, 1947, 301–321 (Russian).

    Google Scholar 

  35. Malkin, K.E., Criteria for the center for a differential equation, Volz. Mat. Sb. 2 (1964), 87–91.

    MathSciNet  Google Scholar 

  36. Mattei, J.-F., Moussu, R., Holonomie et intégrales premières, Ann. Sci. École Norm. Sup. (4) 13 (1980), 469–523.

    Google Scholar 

  37. Moser, J., Stable and Random Motions in Dynamical Systems, Princeton University Press, 1973, chapter 1.

    Google Scholar 

  38. Moser, J., Is the solar system stable?, Math. Intelligencer 1 (1978), no. 2, 65–72.

    Article  MathSciNet  Google Scholar 

  39. Moussu, R., Symétrie et forme normale des centres et foyers dégénérés, Ergodic Theory Dynamical Systems 2 (1982), 241–251.

    Article  MathSciNet  MATH  Google Scholar 

  40. Moussu, R., Une démonstration d’un théorème de Lyapunov-Poincaré, Astérisque 98–99 (1982), 216–223.

    MathSciNet  Google Scholar 

  41. Painlevé, P., Sur les intégrales algébriques des équations différentielles du premier ordre, C. R. Acad. Sci. Paris 110 (1890), 945–948; Oeuvres, vol. 2, Editions CNRS, Paris 1974, 236.

    Google Scholar 

  42. Painlevé, P., Mémoire sur les équations différentielles du premier ordre, Ann. Sci. École Norm. Sup. (3) 8 (1881), 9–58, 103–140, 201–226, 276–284; 9 (1882), 9–30, 101–144, 283–308; Oeuvres, vol. 2, Editions CNRS, Paris 1974, 237–461.

    Google Scholar 

  43. Petrovsky, I., On the topology of real plane algebraic curves, Ann. of Math. 39 (1938), 189–209.

    Article  MathSciNet  Google Scholar 

  44. Poincaré, H., Sur les courbes définies par une équation différentielle, C. R. Acad. Sci. Paris 90 (1880), 673–675.

    MATH  Google Scholar 

  45. Poincaré, H., Mémoire sur les courbes définies par les équations différentielles, J. de Math- ématiques (3) 7 (1881), 375–422; 8 (1882), 251–296; Oeuvres de Henri Poincaré, vol. 1, Gauthier-Villars, Paris 1951, 3–84.

    Google Scholar 

  46. Poincaré, H., Sur les courbes définies par les équations différentielles, C. R. Acad. Sci. Paris 93 (1881), 951–952; Oeuvres de Henri Poincaré, vol. 1, Gauthier-Villars, Paris 1951, 85–86.

    Google Scholar 

  47. Poincaré, H., Mémoire sur les courbes définies par les équations différentielles, J. Math. Pures Appl. (4) 1 (1885), 167–244; Oeuvres de Henri Poincaré, vol. 1, Gauthier-Villars, Paris 1951, 95–114.

    Google Scholar 

  48. Sur l’intégration algébrique des équations différentielles, C. R. Acad. Sci. Paris 112 (1891), 761–764.

    Google Scholar 

  49. Sur l’intégration algébrique des équations différentielles du premier ordre et du premier degré, Rend. Circ. Mat. Palermo 5 (1891), 169–191.

    Google Scholar 

  50. Sur l’intégration des équations différentielles du premier ordre et du premier degré, Rend. Circ. Mat. Palermo 11 (1897), 193–239.

    Google Scholar 

  51. Prelle, M.J., Singer, M.F., Elementary first integrals of differential equations, Trans. Amer. Math. Soc. 279 (1983), 215–229.

    Google Scholar 

  52. Reeb, G., Sur certaines propriétés topologiques des variétés feuilletées, Publ. Inst. Math. Univ. Strasbourg 11 (1952), 91–154.

    MathSciNet  Google Scholar 

  53. Rosenlicht, M., Integration in finite terms, Amer. Math. Monthly 70 (1972), 963–973.

    Article  MathSciNet  Google Scholar 

  54. Rosenlicht, M., Singer, M.F., On elementary, generalized elementary, and Liouvillian extension fields, in: Contributions to Algebra ( H. Bass et al., eds.), Academic Press, New York 1977, 329–342.

    Google Scholar 

  55. Rousseau, C., Schlomiuk, D., Cubic vector fields, symmetric with respect to a center, preprint, Université de Montréal, 1992.

    Google Scholar 

  56. Schlomiuk, D., Algebraic particular integrals, integrability and the problem of the center, to appear in Trans. Amer. Math. Soc.

    Google Scholar 

  57. Elementary first integrals and algebraic invariant curves of differential equa- tions, to appear in Exposition. Math.

    Google Scholar 

  58. Schlomiuk, D., Guckenheimer, J., Rand, R., Integrability of plane quadratic vector fields, Exposition. Math. 8 (1990), 3–25.

    MathSciNet  MATH  Google Scholar 

  59. Schlomiuk, D., Algebraic integrals of quadratic systems with a weak focus, in: Bifurcations of Vector Fields (J.-P. Françoise, R. R.oussarie, eds.), Lecture Notes in Math. 1455, Springer-Verlag, Berlin-Heidelberg-New York 1990, 373–384.

    Google Scholar 

  60. Shi, Songling, A method of constructing cycles without contact around a weak focus, J. Differential Equations 41 (1981), 301–312.

    Article  MathSciNet  MATH  Google Scholar 

  61. On the structure of Poincaré-Lyapunov constants for the weak focus of polynomial vector fields, J. Differential Equations 52 (1984), 52–57.

    Google Scholar 

  62. Sibirskii, K.S., On the number of limit cycles in the neighborhood of a singular point, Differentsial’nye Uravneniya 1 (1965), 53–66 (Russian); Differential Equations 1 (1965), 36–47.

    Google Scholar 

  63. Singer, M.F., Liouvillian first integrals of differential equations, Trans. Amer. Math. Soc. 333 (1992), 673–688.

    Article  MathSciNet  MATH  Google Scholar 

  64. Thibaudeau, P., Les systèmes de Kukles I, II, preprints, Université de Montréal, 1991, 1992.

    Google Scholar 

  65. Zoladek, H., The solution of the problem of the center, preprint, University of Warsaw, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schlomiuk, D. (1993). Algebraic and Geometric Aspects of the Theory of Polynomial Vector Fields. In: Schlomiuk, D. (eds) Bifurcations and Periodic Orbits of Vector Fields. NATO ASI Series, vol 408. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8238-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8238-4_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4303-0

  • Online ISBN: 978-94-015-8238-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics