Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 241))

  • 433 Accesses

Abstract

The propagation of a crack in an isotropic elastic medium is treated as a moving boundary problem. Linear stability analysis shows that for the stretched membrane with a central, initially circular hole all modes are stable. On the other hand all modes are unstable for a two-dimensional arrangement where the crack is induced by pressure in a central hole. Numerical simulations of beam lattices yield fractal crack patterns since the instabilities are enhanced by the heterogeneities of the material. Particularly successful for the numerical implementation is the use of vectorized random lattices. The ensemble of cracks generated under increasing load is shown to follow scaling laws in the size of the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H.J. Herrmann and S. Roux (eds.), Statistical Models for the Fracture of Disordered Media ( Elsevier, Amsterdam, 1990 )

    Google Scholar 

  2. T. Vicsek, Fractal Growth, Phenomena ( World Scientific, Singapore, 1988 )

    Google Scholar 

  3. J. Kertész in Ref. 1, p.261

    Google Scholar 

  4. H.J. Herrmann, J. Kertész arid L. de Arcangelis, Europhys. Lett. 10, 117 (1989)

    Google Scholar 

  5. W.W. Mullins and R.F. Sekerka, J. Appt Phys. 34, 323 (1963)

    Article  CAS  Google Scholar 

  6. P.G. Saifmann and G.I. Taylor, Proc. R. Soc. London A. 255, 312 (1957)

    Google Scholar 

  7. H.J. Herrmann in Random Fluctuations in Pattern Growth, eds. H.E. Stanley and N. Ostrowski, (NATO AST Series Vol.157, Kluwer, Dordrecht, 1988 ), p. 149

    Google Scholar 

  8. R. Van Damme, E. Alsa.c and C. Laroe, Comptes Rendus Acad. Sci., Série II 309, 11 (1988)

    Google Scholar 

  9. H. Van Darnme, in The Fractal Approach to Heterogeneous Chemistry, D. Avnir (ed.), p. 199, ( Wiley, 1989 )

    Google Scholar 

  10. L.D. Landau and E.M. Lifschitz, Elasticity (Pergamon, 1960 ), p. 130

    Google Scholar 

  11. M. Barber, J. Donley and J.S. Langer, Phys. Rev. A40, 366 (1989)

    Article  Google Scholar 

  12. H. R. Ball and R. Blumenfeld, Phys. Rev. Lett. 65, 1764 (1990)

    Article  Google Scholar 

  13. H.J. Herrmann and J. Kertész, Physica, A 178, 227 (1992)

    Article  Google Scholar 

  14. D.A. Kessler, J. Koplik and H. Levine, Adv. Phys. 37, 255 (1988)

    Article  Google Scholar 

  15. S. Roux and E. Guyon, J. Physique Lett. 46, L999 (1985)

    Article  Google Scholar 

  16. R.J. Roark and W.C. Young, Formulas for Stress and Strain, ( Mc Craw Hill, Tokyo, 1975 ), p. 89

    Google Scholar 

  17. Numerical Recipes, The Art of Scientific Computing, W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling (Cambridge Univ. Press, 1986 )

    Google Scholar 

  18. E. Louis, F. Guinea and F. Flores, in Fractals in Physics, L. Pietronero and E. Tossatti (eds.) ( Elsevier, Amsterdam, 1986 )

    Google Scholar 

  19. E. Louis and F. Guinea, Europhys. Lett. 3, 871 (1987);

    Article  Google Scholar 

  20. P. Meakin, G. Li, L.M. Sander, E. Louis and F. Guinea, J. Phys. A 22, 1393 (1989);

    Article  Google Scholar 

  21. E.L. Hinrichsen, A. Hansen and S. Roux, Europhys. Lett. 8, 1 (1989)

    Article  Google Scholar 

  22. S. Roux, J. Stat. Phys. 48, 201 (1987)

    Article  Google Scholar 

  23. P. Ossa.dnik, preprint

    Google Scholar 

  24. M.J. Blackburn, W.H. Srnyrl and J.A. Feeney, in Stress Corrosion in High Strength Steels and in Titanium and Aluminium Alloys, ed. B.F. Brown ( Naval Res. Lab., Washington, 1972 ), p. 344

    Google Scholar 

  25. C. Moukarzel and H.J. Herrmann, J. Stat. Phys.

    Google Scholar 

  26. E. Schlangen and J.G.M. van Mier, preprint

    Google Scholar 

  27. H.J. Herrmann, A. Hansen and S. Roux, Phys. Rev. B 39, 637 (1989)

    Article  Google Scholar 

  28. H J. Herrmann, in NATO workshop “Growth Patterns in Physical Sciences and Biology” (Granada, 1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Herrmann, H.J. (1993). Crack Patterns: Generalized Laplacian Structures. In: Schneider, G.A., Petzow, G. (eds) Thermal Shock and Thermal Fatigue Behavior of Advanced Ceramics. NATO ASI Series, vol 241. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8200-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8200-1_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4291-0

  • Online ISBN: 978-94-015-8200-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics