Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 232))

Abstract

Let A be an m-by-n matrix with m = m 1 m 2 and n = n 1 n 2. We consider the problem of finding \(B \in {\mathbb{R}^{{m_1} \times {n_1}}}\;and\;C\; \in \;{\mathbb{R}^{{m_2} \times {n_2}}}\;so\;that\;||\;A - B \otimes C\;||{\;_F}\) is minimized. This problem can be solved by computing the largest singular value and associated singular vectors of a permuted version of A. If A is symmetric, definite, non-negative, or banded, then the minimizing B and C are similarly structured. The idea of using Kronecker product preconditioned is briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. H.C. Andrews and J. Kane. Kronecker Matrices, Computer Implementation, and Generalized Spectra. J. Assoc. Comput. Mach., 17, pp 260–268, 1970.

    Article  MathSciNet  MATH  Google Scholar 

  2. R.H. Barham and W. Drane. An Algorithm for Least Squares Estimation of Nonlinear Parameters when Some of the Parameters are Linear. Technometrics, 14, pp 757–766, 1972.

    Article  MATH  Google Scholar 

  3. R.H. Bartels and G.W. Stewart. Solution of the Equation AX + XB = C. Comm. ACM, 15, pp 820–826,1972.

    Article  Google Scholar 

  4. J.W. Brewer. Kronecker Products and Matrix Calculus in System Theory. IEEE Trans. on Circuits and Systems, 25, pp 772–781, 1978.

    Article  MathSciNet  MATH  Google Scholar 

  5. T.F. Chan. An Optimal Circulant Preconditioner for Toeplitz Systems. SIAM J. Sci. Stat. Comp., 9, pp 766–771, 1988.

    Article  MATH  Google Scholar 

  6. R. Chan and X-Q Jin. A Family of Block Preconditioned for Block Systems. SIAM J. Sci. Stat. Comp., 13, pp 1218–1235,1992.

    Article  MathSciNet  MATH  Google Scholar 

  7. P. Concus, G.H. Golub, and G. Meurant. Block Preconditioning for the Conjugate Gradient Method. SIAM J. Sci. Stat. Comp., 6, pp 220–252,1985.

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Cullum and R.A. Willoughby. Lanczos Algorithms for Large Sparse Symmetric Eigenvalue Computations, Volume I (Theory) and II (Programs), Birkhauser, Boston, 1985.

    Google Scholar 

  9. C. de Boor. Efficient Computer Manipulation of Tensor Products. ACM Trans. Math. Software, 5, pp 173–182, 1979.

    Article  MathSciNet  MATH  Google Scholar 

  10. D.W. Fausett and C. Fulton. Large Least Squares Problems Involving Kronecker Products. SIAM J. Matrix Analysis, to appear, 1992.

    Google Scholar 

  11. G.H. Golub. Some Modified Eigenvalue Problems. SIAM Review, 15, pp 318–344, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  12. G.H. Golub, F. Luk, and M. Overton. A Block Lanzcos Method for Computing the Singular Values and Corresponding Singular Vectors of a Matrix. ACM Trans. Math. Soft., 7, pp 149–169, 1981.

    Article  MathSciNet  MATH  Google Scholar 

  13. G.H. Golub, S. Nash, and C. Van Loan. A Hessenberg-Schur Method for the Matrix Problem AX + XB = C. IEEE Trans. Auto. Cont., AC-24, pp 909–913, 1979.

    Article  Google Scholar 

  14. G.H. Golub and V. Pereya. The Differentiation of Pseudoinverses and Nonlinear least Squares Problems Whose Variables Separate. SIAM J. Numer. Analysis, 10, pp 413–432, 1973.

    Article  MATH  Google Scholar 

  15. G.H. Golub and C. Van Loan. Matrix Computations, 2nd Ed., Johns Hopkins University Press, Baltimore, MD, 1989.

    MATH  Google Scholar 

  16. A. Graham. Kronecker Products and Matrix Calculus with Applications, Ellis Horwood Ltd., Chichester, England, 1981.

    MATH  Google Scholar 

  17. S.R Heap and D.J. Lindler. Block Iterative Restoration of Astronomical Images with the Massively Parallel Processor. Proc. of the First Aerospace Symposium on Massively Parallel Scientific Computation, pp 99–109, 1986.

    Google Scholar 

  18. H.V. Henderson, F. Pukelsheim, and S.R. Searle. On the History of the Kronecker Product. Linear and Multilinear Algebra, 14, pp 113–120, 1983.

    Article  MathSciNet  MATH  Google Scholar 

  19. H.V. Henderson and S.R. Searle. The Vec-Permutation Matrix, The Vec Operator and Kronecker Products: A Review. Linear and Multilinear Algebra, 9, pp 271–288,1981.

    Article  MathSciNet  MATH  Google Scholar 

  20. R.A. Horn and C.A. Johnson. Matrix Analysis, Cambridge University Press, New York, 1985.

    Book  MATH  Google Scholar 

  21. R.A. Horn and C.A. Johnson. Topics in Matrix Analysis, Cambridge University Press, New York, 1991.

    Book  MATH  Google Scholar 

  22. C-H Huang, J.R. Johnson, and R.W. Johnson. Multilinear Algebra and Parallel Programming. J. Supercomputing, 5, pp 189–217, 1991.

    Article  MATH  Google Scholar 

  23. J. Johnson, R.W. Johnson, D. Rodriguez, and R. Tolimieri. A Methodology for Designing, Modifying, and Implementing Fourier Transform Algorithms on Various Architectures. Circuits, Systems, and Signal Processing, 9, pp 449–500, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  24. L. Kaufman. A Variable Projection Method for Solving Separable Nonlinear Least Squares Problems. BIT, 15, pp 49–57, 1975.

    Article  MathSciNet  MATH  Google Scholar 

  25. V. Pereyra and G. Scherer. Efficient Computer Manipulation of Tensor Products with Applications to Multidimensional Approximation. Mathematics of Computation, 27, pp 595–604, 1973.

    Article  MathSciNet  MATH  Google Scholar 

  26. U.A. Rauhala. Introduction to Array Algebra. Photogrammetric Engineering and Remote Sensing, 46(2), pp 177–182, 1980.

    Google Scholar 

  27. P.A. Regalia and S. Mitra. Kronecker Products, Unitary Matrices, and Signal Processing Applications. SIAM Rev., 31, pp 586–613, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  28. A. Swami and J. Mendel. Time and Lag Recursive Computation of Cumulants from a State-Space Model. IEEE Trans. Auto. Cont., 35, pp 4–17, 1990.

    Article  MathSciNet  MATH  Google Scholar 

  29. C. Van Loan. Computational Frameworks for the Fast Fourier Transform, SIAM Publications, Philadelphia, PA, 1992.

    Book  MATH  Google Scholar 

  30. J.H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press, New York, 1965.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Van Loan, C.F., Pitsianis, N. (1993). Approximation with Kronecker Products. In: Moonen, M.S., Golub, G.H., De Moor, B.L.R. (eds) Linear Algebra for Large Scale and Real-Time Applications. NATO ASI Series, vol 232. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8196-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-015-8196-7_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-90-481-4246-0

  • Online ISBN: 978-94-015-8196-7

  • eBook Packages: Springer Book Archive

Keywords

Publish with us

Policies and ethics