Abstract
Let A be an m-by-n matrix with m = m 1 m 2 and n = n 1 n 2. We consider the problem of finding \(B \in {\mathbb{R}^{{m_1} \times {n_1}}}\;and\;C\; \in \;{\mathbb{R}^{{m_2} \times {n_2}}}\;so\;that\;||\;A - B \otimes C\;||{\;_F}\) is minimized. This problem can be solved by computing the largest singular value and associated singular vectors of a permuted version of A. If A is symmetric, definite, non-negative, or banded, then the minimizing B and C are similarly structured. The idea of using Kronecker product preconditioned is briefly discussed.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
H.C. Andrews and J. Kane. Kronecker Matrices, Computer Implementation, and Generalized Spectra. J. Assoc. Comput. Mach., 17, pp 260–268, 1970.
R.H. Barham and W. Drane. An Algorithm for Least Squares Estimation of Nonlinear Parameters when Some of the Parameters are Linear. Technometrics, 14, pp 757–766, 1972.
R.H. Bartels and G.W. Stewart. Solution of the Equation AX + XB = C. Comm. ACM, 15, pp 820–826,1972.
J.W. Brewer. Kronecker Products and Matrix Calculus in System Theory. IEEE Trans. on Circuits and Systems, 25, pp 772–781, 1978.
T.F. Chan. An Optimal Circulant Preconditioner for Toeplitz Systems. SIAM J. Sci. Stat. Comp., 9, pp 766–771, 1988.
R. Chan and X-Q Jin. A Family of Block Preconditioned for Block Systems. SIAM J. Sci. Stat. Comp., 13, pp 1218–1235,1992.
P. Concus, G.H. Golub, and G. Meurant. Block Preconditioning for the Conjugate Gradient Method. SIAM J. Sci. Stat. Comp., 6, pp 220–252,1985.
J. Cullum and R.A. Willoughby. Lanczos Algorithms for Large Sparse Symmetric Eigenvalue Computations, Volume I (Theory) and II (Programs), Birkhauser, Boston, 1985.
C. de Boor. Efficient Computer Manipulation of Tensor Products. ACM Trans. Math. Software, 5, pp 173–182, 1979.
D.W. Fausett and C. Fulton. Large Least Squares Problems Involving Kronecker Products. SIAM J. Matrix Analysis, to appear, 1992.
G.H. Golub. Some Modified Eigenvalue Problems. SIAM Review, 15, pp 318–344, 1973.
G.H. Golub, F. Luk, and M. Overton. A Block Lanzcos Method for Computing the Singular Values and Corresponding Singular Vectors of a Matrix. ACM Trans. Math. Soft., 7, pp 149–169, 1981.
G.H. Golub, S. Nash, and C. Van Loan. A Hessenberg-Schur Method for the Matrix Problem AX + XB = C. IEEE Trans. Auto. Cont., AC-24, pp 909–913, 1979.
G.H. Golub and V. Pereya. The Differentiation of Pseudoinverses and Nonlinear least Squares Problems Whose Variables Separate. SIAM J. Numer. Analysis, 10, pp 413–432, 1973.
G.H. Golub and C. Van Loan. Matrix Computations, 2nd Ed., Johns Hopkins University Press, Baltimore, MD, 1989.
A. Graham. Kronecker Products and Matrix Calculus with Applications, Ellis Horwood Ltd., Chichester, England, 1981.
S.R Heap and D.J. Lindler. Block Iterative Restoration of Astronomical Images with the Massively Parallel Processor. Proc. of the First Aerospace Symposium on Massively Parallel Scientific Computation, pp 99–109, 1986.
H.V. Henderson, F. Pukelsheim, and S.R. Searle. On the History of the Kronecker Product. Linear and Multilinear Algebra, 14, pp 113–120, 1983.
H.V. Henderson and S.R. Searle. The Vec-Permutation Matrix, The Vec Operator and Kronecker Products: A Review. Linear and Multilinear Algebra, 9, pp 271–288,1981.
R.A. Horn and C.A. Johnson. Matrix Analysis, Cambridge University Press, New York, 1985.
R.A. Horn and C.A. Johnson. Topics in Matrix Analysis, Cambridge University Press, New York, 1991.
C-H Huang, J.R. Johnson, and R.W. Johnson. Multilinear Algebra and Parallel Programming. J. Supercomputing, 5, pp 189–217, 1991.
J. Johnson, R.W. Johnson, D. Rodriguez, and R. Tolimieri. A Methodology for Designing, Modifying, and Implementing Fourier Transform Algorithms on Various Architectures. Circuits, Systems, and Signal Processing, 9, pp 449–500, 1990.
L. Kaufman. A Variable Projection Method for Solving Separable Nonlinear Least Squares Problems. BIT, 15, pp 49–57, 1975.
V. Pereyra and G. Scherer. Efficient Computer Manipulation of Tensor Products with Applications to Multidimensional Approximation. Mathematics of Computation, 27, pp 595–604, 1973.
U.A. Rauhala. Introduction to Array Algebra. Photogrammetric Engineering and Remote Sensing, 46(2), pp 177–182, 1980.
P.A. Regalia and S. Mitra. Kronecker Products, Unitary Matrices, and Signal Processing Applications. SIAM Rev., 31, pp 586–613, 1989.
A. Swami and J. Mendel. Time and Lag Recursive Computation of Cumulants from a State-Space Model. IEEE Trans. Auto. Cont., 35, pp 4–17, 1990.
C. Van Loan. Computational Frameworks for the Fast Fourier Transform, SIAM Publications, Philadelphia, PA, 1992.
J.H. Wilkinson. The Algebraic Eigenvalue Problem. Oxford University Press, New York, 1965.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1993 Springer Science+Business Media Dordrecht
About this chapter
Cite this chapter
Van Loan, C.F., Pitsianis, N. (1993). Approximation with Kronecker Products. In: Moonen, M.S., Golub, G.H., De Moor, B.L.R. (eds) Linear Algebra for Large Scale and Real-Time Applications. NATO ASI Series, vol 232. Springer, Dordrecht. https://doi.org/10.1007/978-94-015-8196-7_17
Download citation
DOI: https://doi.org/10.1007/978-94-015-8196-7_17
Publisher Name: Springer, Dordrecht
Print ISBN: 978-90-481-4246-0
Online ISBN: 978-94-015-8196-7
eBook Packages: Springer Book Archive

